§1.2.1中心投影与平行投影1.2.2空间几何体的三视图学习目标1.了解中心投影与平行投影的区别;2.能画出简单空间图形的三视图;3.能识别三视图所表示的空间几何体;学习过程一、课前准备(预习教材P11~P14,找出疑惑之处)复习1:圆柱、圆锥、圆台、球分别是_______绕着________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的.复习2:简单组合体构成的方式:________________和_____________________________________.二、新课导学※探索新知探究1:中心投影和平行投影的有关概念问题:中午在太阳的直射下,地上会有我们的影子;晚上我们走在路灯旁身后也会留下长长的影子,你知道这是什么现象吗?为什么影子有长有短?新知1:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中光线叫投影线,留下物体影子的屏幕叫投影面.光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,否则叫斜投影.思考:中午太阳的直射是什么投影?路灯、蜡烛的照射是什么投影?试试:在下图中,分别作出圆在中心投影和平行投影中正投影的影子.结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同的.探究2:柱、锥、台、球的三视图问题:我们学过的几何体(柱、锥、台、球),为了研究的需要,常常要在纸上把它们表示出来,该怎么画呢?能否用平行投影的方法呢?新知2:为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图
;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.下图是一个长方体的三视图.俯视图侧视图正视图思考:仔细观察上图长方体和下图圆柱的三视图,你能得出同一几何体的三视图在形状、大小方面的关系吗?能归纳三视图的画法吗?小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位.探究3:简单组合体的三视图问题:下图是个组合体,你能画出它的三视图吗?小结:画简单组合体的三视图,要先观察它的结构,是由哪几个基本几何体生成的,然后画出对应几何体的三视图,最后组合在一起.注意线的虚实.※典型例题例1画出下列物体的三视图:
例2说出下列三视图表示的几何体:※动手试试练作出下图中两个物体的三视图三、总结提升※学习小结1.平行投影与中心投影的区别;2.三视图的定义及简单几何体画法:正视图(前往后)、侧视图(左往右)、俯视图(上往下);画时注意长对正、高平齐、宽相等;3.简单组合体画法:观察结构,各个击破.※知识拓展画三视图时若相邻两物体表面相交,则交线要用实线画出;确定正视、俯视、侧视的方向,同一物体放置的方向不同,所画的三视图可能不同.学习评价※当堂检测1.下列哪种光源的照射是平行投影().A.蜡烛B.正午太阳C.路灯D.电灯泡2.左边是一个几何体的三视图,则这个几何体是()A.四棱锥B.圆锥C.三棱锥D.三棱台3.如图是个六棱柱,其三视图为().A.B.C.D.
4.下列几何体各自的三视图中,有且仅有两个视图相同的是__________________5.下图依次是一个几何体的正、俯、侧视图,,则它的立体图为________.课后作业1.如图是一个物体的三视图,则此三视图所描述的物体是几何体()2.关于几何体的三视图,下面说法正确的是()A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽3.下列说法中正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形4.螺栓是棱柱和圆柱构成的组合体,如图,画出它的三视图.5.画出下面几何体的三视图.(箭头的方向为正前方)
6.一个正方体的五个面展开如图所示,请你在图中合适的位置补出第六个面来.(画出所有可能的情况)7.如果用表示1个立方体,用表示2个立方体叠加,用表示3个立方体叠加,下图所示的是由7个立方体叠成的几何体,那么从正前方观察,可画出的平面图形是()8.给出下列命题,其中正确命题的个数是()①如果一个几何体的三视图是完全相同的,则这个几何体是正方体②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体③如果一个几何体的三视图都是矩形,则这个几何体是长方体④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台A.0B.1C.2D.39如图,三棱柱的侧棱长和底边长均为2,且侧棱平面正视图与俯视图如图,则该三棱柱的侧视图面积为___________________.10.下面是3个三视图和3个实物图,请将三视图和实物图正确配对.
(1)的实物图是_____;(2)的实物图是_____;(3)的实物图是______11.用小方块搭一个几何体,使得它的正视图和俯视图如图所示,这样的几何体只有一种吗?它至少需要多少个小立方块?最多需要多少个小立方块?