人教A版高中数学必修2第一章-空间几何体1.2-空间几何体的三视图和直观图 教案
加入VIP免费下载

人教A版高中数学必修2第一章-空间几何体1.2-空间几何体的三视图和直观图 教案

ID:1217059

大小:230.19 KB

页数:8页

时间:2022-08-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.2.3空间几何体的直观图三维目标通过用斜二测画法画水平放置的平面图形和空间儿何体的直观图,提高学生识图和画图的能力,培养探究精神和意识,以及转化与化归的数学思想方法.重点难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:直观图和三视图的互化.教学过程一、复习:(1)什么叫中心投影、平行投影、斜投影、正投影?(2)三视图采用何种投影?三视图指哪三种视图?画三视图要注意什么?说明:三视图在工程制图中被广泛釆用,但其直观性较差,因此,在绘制物体的直观图时,一般采用斜投影或中心投影。二、合作探究提出问题①如何用斜二测画法画水平放置的正六边形的直观图?②上述画直观图的方法称为斜二测画法,请总结其步骤.③探求空间几何体的直观图的画法•用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A^B'UD'的直观图.④用斜二测画法画水平放置的平面图形和几何体的直观图有什么不同?并总结画几何体的直观图的步骤.活动:①和③教师首先示范画法,并让学生思考斜二测画法的关键步骤,让学生发表自己的见解,教师及时给予点评.②根据上述画法来归纳.③让学生比较两种画法的步骤.讨论结果:①画法:1°如图1(1),在正六边形ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点0.在图1(2)中,画相应的*轴与y'轴,两轴相交于点0’,使Zx'0’y1=45°.2°在图1(2)中,以0’为中点,在*轴上取A'])f二AD,在『轴上取M'N'=丄個2 以点N'为中点画B'C'平行于*轴,并且等于BC;再以W为中点画E‘F'平行于*轴,并且等于EF.D‘Ez,“A',并擦去辅助线"轴和y‘轴,便获得正六F'(图1⑶).边形ABCDEF水平放置的直观图A'B‘C‘D'⑵⑶②步骤是:1°在已知图形屮取互相垂直的x轴和y轴,两轴相交于点0.画直观图时,把它们画成对应的X’轴与『轴,两轴交于点0/,且使Zx'O'『=45°(或135°),它们确定的平面表示水平面.2°已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于*轴或『轴的线段.3°已知图形屮平行于x轴的线段,在直观图屮保持原长度不变,平行于y轴的线段,长度为原來的一半.③画法:1°画输如图2,画x轴、y轴、z轴,三轴相交于点0,使ZxOy二45°,Zx0z=90°.2°画底面.以点0为中点,在x轴上取线段\IN,使MN=4cm;在y轴上取线段PQ,使PQ=-cm.2分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A、B、C、D,四边形ABCD就是长方体的底面ABCD.3°画侧棱.过A、B、C、D各点分别作z轴的平行线,并在这些平行线上分别截取2cm长的线段AA‘、BBZ、CCZ、DDZ.4°成图.顺次连接A'、B‘、C'、D',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.点评:画儿何体的直观图时,如果不作严格要求,图形尺寸可以适当选取,用斜二测画法画图的角度也可以自定,但是要求图形具有一定的立体感.②画几何体的直观图时还耍建立三条轴,实际是建立了空间直角坐标系,而画水平放置平面图形的直观图实际上建立的是平面直角坐标系.画几何体的直观图的步骤是:1°在已知图形所在的空间中取水平平面,作互相垂直的轴Ox、Oy,再作Oz轴,使Zx0y=90°,Zy0z=90°. 2°画出与Ox、Oy、Oz对应的轴O'x‘、O'y‘、0,z‘,使Zx‘O'y‘=45°,Zy‘O'z'二90°,x‘0’所确定的平面表示水平平面.3°已知图形中,平行于x轴、y轴和z轴的线段,在直观图中分别画成平行于*轴、y'轴和*轴的线段,并使它们在所画坐标轴中的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.4°已知图形屮平行于x轴和z轴的线段,在直观图屮保持长度不变,平行于y轴的线段,长度为原來的一半.5°擦除作为辅助线的坐标轴,就得到了空间图形的直观图.斜二测画法的作图技巧:1°在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线为坐标轴或图形的对称直线为坐标轴或图形的对称点为原点或利用原有垂直正交的直线为坐标轴等.2°在原图屮与x轴或y轴平行的线段在直观图屮依然与"轴或『轴平行,原图屮不与坐标轴平行的线段可以先画出线段的端点再连线,画端点吋作坐标轴的平行线为辅助线.原图中的曲线段可以通过取一些关键点,利用上述方法作出直观图中的相应点后,用平滑的曲线连接而画出.3°在画一个水平放置的平面时,由于平面是无限延展的,通常我们只画出它的一部分表示平面,一般地,用平行四边形表示空间一个水平平面的直观图.例1用斜二测画法画水平放置的圆的直观图.活动:学生冋顾讨论斜二测画法的步骤,自己画出来后再互相交流.教师适当点评.解:(1)如图3(1),在00上取互相垂直的直径AB、CD,分别以它们所在的直线为x轴与y轴,将线段ABn等分.过各分点分别作y轴的平行线,交于E,F,G,II,…,画对应的”轴和『轴,使厶'0,『二45°. 图3(3)(2)如图3(2),以0’为中点,在*轴上取A,B'二AB,在*轴上取C‘D'二丄CD,将"B'2n等分,分别以这些分点为中点,画与y‘轴平行的线段E'F‘,G,『,…,使EzV=-EFiG,Hz=-GH,….22(3)用光滑曲线顺次连接A',D‘,F‘,H',…,B‘,G‘,E‘,C‘,A'并擦去辅助线,得到圆的水平放置的直观图(图3(3)).变式关于“斜二测画法”,下列说法不正确的是()A.原图形屮平行于x轴的线段,其对应线段平行于X’轴,长度不变B.原图形屮平行于y轴的线段,其对应线段平行于『轴,长度变为原来的丄2C.在画与直角坐标系xOy对应的x'O'y'时,Zx‘O'y‘必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy对应的x,0’『吋,Zxz0zyz也可以是135°,所以C不正确.答案:C例2如图4,己知几何体的三视图,用斜二测画法画出它的直观图.pP0.0止视图侧视图俯视图图4活动:让学生由三视图还原为实物图,并判断该儿何体的结构特征.教师分析:由儿何体的三视图知道,这个儿何体是一个简单组合体,它的下部是一个圆柱,上部是 一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.解:画法:使Zx0y=45°,Zx0z=90°.,使00’等于三视图(2)画圆柱的两底面,仿照例2画法,画出底面©0.在z轴上截取0’中相应高度,过0’作Ox的平行线0’x,,0y的平行线O'y‘,利用O'x,与0’『画出底面<30,(与画00—样).(3)画圆锥的顶点.在(k上截取点P,使P0'等于三视图中相应的高度.(2)成图.连接PA',PB',A'A,B,整理得到三视图表示的儿何体的直观图(图5(2)).点评:空间几何体的三视图与直观图有着密切的联系,我们能够市空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.变式图6所示是一个奖杯的三视图,你能想彖出它的儿何结构,并画出它的直观图吗?侧视图答案:奖杯的儿何结构是最上面是一个球,屮间是一个四棱柱,最下面是一个棱台拼接成的简单组合体.其直观图略. 岀它的百观图.活动:利用斜二测画法作该梯形的直观图,要注意在斜二测画法中,要冇一些平行于原坐标轴的线段才好按部就班地作图,所以先在原坐标系中过D作出该点在x轴的垂足,则刈•应地可以作出线段DE的直观图,进而作出整个梯形的直观图.解:步骤是:(1)如图8所示,在梯形ABCD中,以边AB所在的直线为x轴,点A为原点,建立平而直角坐标系xOy•如图9所示,画出对应的*轴,yz轴,使Zx,Azyz二45。.(2)如图8所示,过D点作DE丄x轴,垂足为E•在x‘轴上取NW二AB二4cm,NEz=AE=-V3cm^2.598cm;过E,作UDf//yf轴,使E,Dz2〃x‘轴,护,再过点D,作D,C,图9E'B'x'D'CDfCA!图10(3)连接A,D‘、B,C‘、C‘L,并擦去x‘轴与『轴及其他一些辅助线,如图10所示,则四边形A'C'D'就是所求作的直观图.三、迁移运用1.利用斜二测画法画直观图时:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是・分析:斜二测画法保持平行性和相交性不变,即平行直线的直观图还是平行直线,相交直线的直观图还是相交直线,故①②正确;但是斜二测画法中平行于y轴的线段,在直观图中长度为原来的一半,则正方形的直观图不是正方形,菱形的直观图不是菱形,所以③④错.答案:①② 1.—个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是()A.2V6B.4品C.V3D.都不对分析:根据斜二测画法的规则,•正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的2血倍,而正三角形的高是能,所以原三角形的高为2后,于是其面积为丄X22X2^6=276.答案:A2.—个水平放置的平面图形的直观图是一个底角为45°,腰和上底氏均为1的等腰梯形,则该平面图形的面积等于()C.1+V2D.2+V2分析:平面图形是上底长为1,下底长为1+V2,高为2的直角梯形.计算得面积为2+V2.答案:D3.斜二测画法屮,位于平面直角坐标系中的点M(4,4)在直观图屮对应点是W,则点的找法是.分析:在*轴的正方向上取点轴,使O'Mf4,在y'轴上取点地,使0’地二2,过和hb分别作平行于y‘轴和*轴的直线的交点就是W・答案:在*0'『中,过点(4,0)和y‘轴平行的直线与过(0,2)和*轴平行的直线的交点即是.4.根据图14所示物体的三视图(阴影部分为空洞)描绘出物体的大致形状.俯视图图14分析:根据该物体的三视图可以判断该物体的外轮廓是一个正方体,从正面和左面看是一个正方形中间有一个圆形的孔.从而知这两个面应该都有一个圆柱形的孔. 解:rti此川以推测该物体大致形状如图15所示.I图15

10000+的老师在这里下载备课资料