空间几何体的结构、三视图、直观图、表面积与体积一、选择题1.(2011·山东)右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其主视图、俯视图如右图;②存在四棱柱,其主视图、俯视图如右图;③存在圆柱,其主视图、俯视图如右图.其中真命题的个数是( )A.3B.2C.1D.02.一个正方体截去两个角后所得几何体的主视图、左视图如右图所示,则其俯视图为( )3.在棱长为1的正方体ABCD—A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D;⑤四边形BFD1E面积的最小值为.其中正确的是( )A.①②③④B.②③④⑤C.①③④⑤D.①②④⑤4.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.πB.π+C.π+D.π+5.在四棱锥E—ABCD中,底面ABCD为梯形,AB∥CD,2AB=3CD,M为AE的中点,设E—ABCD的体积为V,那么三棱锥M—EBC的体积为( )A.VB.VC.VD.V6.(2012·北京)某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6B.30+6C.56+12D.60+12二、填空题7.如图所示,E、F分别为正方体ABCD—A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是________.(填序号)
8.用半径为r的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是________.9.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是____(填出所有可能的序号).10.如图,已知正三棱柱ABC—A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为______cm.11.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为,则该几何体的体积是________.12.(2012·上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是________.三、解答题13.已知正三棱锥V—ABC的主视图、左视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出左视图的面积.14.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D—ABC,如图2所示.(1)求证:BC⊥平面ACD;(2)求几何体D—ABC的体积.