空间几何体的三视图和直观图
横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。——苏轼
横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。——苏轼
从不同的角度看同一物体,视觉的效果可能不同,要比较真实地反映出物体的特征我们可从多角度观看物体。
特点:中心投影的投影大小与物体和投影面之间的距离有关。1.中心投影:S(1)把光由一点向外散射形成的投影叫中心投影。投射线投影面
2.平行投影:当把投影中心移到无穷远,在一束平行光线照射下形成的投影,叫平行投影。正投影:投影方向垂直于投影面的投影.斜投影:投影方向与投影面倾斜的投影。(3)(2)
特点:与投影面平行的平面图形留下的影子,与物体的形状大小完全相同,与物体和投影面之间的距离无关。
长方体的三视图正视图俯视图侧视图c(高)a(长)b(宽)
正视图反映了物体的高度和长度侧视图反映了物体的高度和宽度俯视图反映了物体的长度和宽度c(高)a(长)b(宽)正视图侧视图俯视图三视图之间的投影规律a(长)c(高)c(高)b(宽)b(宽)a(长)长对正高平齐宽相等三视图能反映物体真实的形状和长、宽、高.
圆柱正侧俯(1)圆柱的三视图正视图侧视图俯视图例1
侧正俯(2)圆锥的三视图圆锥例2侧视图正视图俯视图·
例2请同学们画下面这两个圆台的三视图,如果你认为这两个圆台的三视图一样,画一个就可以;如果你认为不一样,请分别画出来。
俯视图正视图侧视图俯视图正视图侧视图
注意:(1)画几何体的三视图时,能看见的轮廓和棱用实线表示,不能看见的轮廓和棱用虚线表示。(2)长对正,高平齐,宽相等。
练习、画下例几何体的三视图侧正俯
除了会画如正方体、长方体、圆柱、圆锥、球等基本几何体的三视图外,我们还将学习画出由一些简单几何体组成的组合体的三视图。
请同学们试试画出立白洗洁精塑料瓶的三视图
正视图侧视图俯视图
练习:(1)(2)
圆柱正视图侧视图俯视图俯侧正
正视图侧视图侧视图
还原成实物图:刚才所作的三视图,你能将其还原成实物模型吗?
圆台圆台根据三视图判断几何体正侧俯俯视图正视图侧视图例3
侧视图正视图俯视图正视图侧视图俯视图正侧俯根据三视图判断几何体例4
根据三视图判断几何体正视图侧视图俯视图例5正俯侧四棱柱三棱柱
正视图侧视图探究(1):在例3中,若只给出正,侧视图,那么它除了是圆台外,还可能是什么几何体?俯视图不同的几何体可能有某一两个视图相同所以我们只有通过全部三个视图才能全面准确的反映一个几何体的特征。正四棱台俯侧正
小结:画几何体的三视图时,能看得见的轮廓线或棱用实线表示,不能看得见的轮廓线或棱用虚线表示。三视图之间的投影规律:正视图与俯视图------长对正。正视图与侧视图------高平齐。俯视图与侧视图------宽相等。1、2、3空间想象能力,逆向思维能力
作业:书本P21(A)1,2,5(B)3