空间几何体的直观图!本资料为N所在直线为y轴,两轴相交于点O。在图1.2-10(2)中,画相应的x’轴与y’轴,两轴相交于点O’,使=450。②在图1.2-10(2)中,以O’为中点,在x’轴上取A’D’=AD,在y’轴上取M’N’=MN。以点N’为中点,画B’C’平行于x’轴,并且等于BC;再以M’为中点,画E’F’平行于x’轴,并且等于EF。③连接A’B’,C’D’,D’E’,F’A’,并檫去辅助线x’轴和y’轴,便获得正六边形ABCDEF水平放置的直观图A’B’C’D’E’F’(图1.2-10(3))。(2)给出斜二测画法的基本步骤:①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使=450(或1350),它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘
轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。(3)练习:用斜二测画法画水平放置的正五边形.(4)讨论:水平放置的圆如何画?(正等测画法;椭圆模板)2.空间图形的斜二测画法:(1)讨论:如何用斜二测画法画空间图形?例2用斜二测画法画长4cm、宽3cm、高2cm的长方体ABCD-A’B’C’D’的直观图.(师生共练,建系→取点→连线,注意变与不变;小结:画法步骤)画法:①画轴。如图1.2-12,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=450,∠xOz=900.②画底面。以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.③画侧棱。过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别取2cm长的线段AA’,BB’,CC’,DD’.④成图。顺次连接A’,B’,C’,D’
,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图。(2)思考:如何根据三视图,用斜二测画法画它的直观图?例3如图1.2-13,已知几何体的三视图,用斜二测画法画出它的直观图。分析:有几何体的三视图知道,这个几何体是一个简单组合体。它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合。我们可以先画出下部的圆柱,再画出上部的圆锥。画法:①画轴。如图1.2-14(1),画x轴、z轴,使∠xOz=900。②画圆柱的下底面。在x轴上取A,B两点,使AB的长度等于俯视图中圆的直径,且OA=OB。选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面。③在Oz上截取点O’,使OO’等于正视图中OO’的长度,过点O’作平行于轴Ox的轴O’x’,类似圆柱下底面的作法作出圆柱的上底面。④画圆锥的顶点。在Oz上截取点P,使PO’等于正视图中相应的高度。⑤成图。连接PA’,PB’,AA’,BB’,整理得到三视图表示的几何体的直观图(图1.2-14(2))
强调:用斜二测画法画图,注意正确把握图形尺寸大小的关系。(3)讨论:三视图与直观图有何联系与区别?空间几何体的三视图与直观图有密切联系.三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸).直观图是对空间几何体的整体刻画,根据直观