专题训练(六)[分类讨论思想]1.如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA,PB,那么使△ABP为等腰直角三角形的点P的个数是( )A.2个B.3个C.4个D.5个2.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有三个,则x的值是 . 3.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 . 4.在等腰三角形ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为 . 5.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为 . 6.如图,抛物线y=ax2+bx-2与x轴交于A,B两点,与y轴交于C点,已知A(3,0),且M1,-是抛物线上一点.(1)求a,b的值;(2)连接AC,设点P是y轴上任一点,若以P,A,C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O,A重合),过点N作NH∥AC交抛物线的对称轴于点H.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.
7.如图①,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4.矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的表达式.(2)如图ZT6-5②,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值.(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.8.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图6①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图②,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
参考答案1.B [解析]由图可知,矩形的长是宽的2倍,以点B为直角顶点构成等腰直角三角形的点P有2个,以点A为直角顶点构成等腰直角三角形的点P有1个,∴满足条件的有3个.2.0或4-4或4