《第11章一元一次不等式》一、填空1.用“>”或“<”填空:(1)若a>b,则a+c b+c;(2)若m+2<n+2,则m﹣4 n﹣4;(3)若b>﹣1,则b+1 0;(4)若a<b,则﹣3a ﹣3b;(5)若>,则a b;(6)若a<b,则﹣2a+1 ﹣2b+1.2.判断下列各题的推导是否正确,并说明理由.(1)因为7.5>5.7,所以﹣7.5<﹣5.7;(2)因为a+8>4,所以a>﹣4;(3)因为4a>4b,所以a>b;(4)因为﹣1>﹣2,所以﹣a﹣1>﹣a﹣2.3.写出使下列推理成立的条件.(1)4m>2m: ;(2)如果a>b,那么ac<bc: ;(3)如果a>b,那么ac2>bc2: ;(4)如果ax<b,那么x>: .4.若a>b,c<0,用“>”或“<”填空:(1)a+3 b+1;(2)﹣a ﹣b;(3)ac2 bc2;(4) .5.若是一元一次不等式,则m= .6.不等式x﹣1≥﹣3的解集为 ,其中不等式的负整数解为 .7.不等式3(x+1)≥5x﹣3的正整数解是 .8.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是 .第18页(共18页)
9.解不等式:2(x+1)﹣3(x+2)<0;并把解集在数轴上表示出来.二、选择10.下列不等式变形正确的是( )A.由4x﹣1>2,得4x>1B.由5x>3,得x>C.由>0,得y>2D.由﹣2x<4,得x>﹣211.若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有( )A.1个B.2个C.3个D.4个12.若不等式ax>b的解集是x>,则a的范围是( )A.a≥0B.a≤0C.a>0D.a<0三、解答13.根据不等式的性质,把下列不等式化为“x>a”或“x<a”的形式,并说出每次变形的依据.(1)x+3<﹣2;(2)x>﹣1;(3)7x>6x﹣4;(4)﹣x﹣1<0.14.(1)甲在不等式﹣10<0的两边都乘﹣1,竟得到10<0!为什么?(2)乙在不等式2x>5x两边同除以x,竟得到2>5!又是为什么?(3)你能利用不等式的性质将不等式“a>b”变形为“b<a”吗?试试看.15.一辆12个座位的汽车上已有4名乘客,到一个站后又上来x个人,车上仍有空位,可以得到怎样的不等式?并判断x的取值范围.第18页(共18页)
16.比较两个数的大小可以通过它们的差来判断.例如要比较a和b的大小,那么:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反之也成立.因此,我们常常将要比较的两个数先作差计算,再根据差的符号来判断这两个数的大小.根据上述结论,试比较x4+2x2+2与x4+x2+2x的大小关系.17.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.18.解下列不等式,并把解集在数轴上表示出来:(1)7+x>3;(2)x<1;(3)4+3x>6﹣2x.19.解答下列各题:(1)x取何值时,代数式3x+2的值不大于代数式4x+3的值?(2)当m为何值时,关于x的方程x﹣1=m的解不小于3?(3)求不等式2x﹣3<5的最大整数解.第18页(共18页)
20.某辆汽车油箱中原有油60L,汽车每行驶1km耗油0.08L,请你估计行驶多少千米后油箱中的油少于20L.21.小丽在学了这节内容后,总结出:解一元一次不等式,就是利用不等式的性质把所要求的不等式转化为“x>a”或“x<a”的形式.你同意小丽的观点吗?请自编、自解一个一元一次不等式,再体会小丽的说法. 第18页(共18页)
参考答案与试题解析一、填空1.用“>”或“<”填空:(1)若a>b,则a+c > b+c;(2)若m+2<n+2,则m﹣4 < n﹣4;(3)若b>﹣1,则b+1 > 0;(4)若a<b,则﹣3a > ﹣3b;(5)若>,则a > b;(6)若a<b,则﹣2a+1 > ﹣2b+1.【考点】不等式的性质.【分析】(1)根据不等式的性质1,进而得出答案;(2)根据不等式的性质1,进而得出答案;(3)根据不等式的性质1,进而得出答案;(4)根据不等式的性质2,进而得出答案;(5)根据不等式的性质2,进而得出答案;(6)根据不等式的性质2,进而得出答案.【解答】解:(1)若a>b,则a+c>b+c;(2)若m+2<n+2,则m﹣4<n﹣4;(3)若b>﹣1,则b+1>0;(4)若a<b,则﹣3a>﹣3b;(5)若>,则a>b;(6)若a<b,则﹣2a+1>﹣2b+1.故答案为:(1)>;(2)<;(3)>;(4)>;(5)>;(6)>.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键. 2.判断下列各题的推导是否正确,并说明理由.(1)因为7.5>5.7,所以﹣7.5<﹣5.7;(2)因为a+8>4,所以a>﹣4;(3)因为4a>4b,所以a>b;第18页(共18页)
(4)因为﹣1>﹣2,所以﹣a﹣1>﹣a﹣2.【考点】不等式的性质.【分析】(1)根据不等式的性质2,进而得出答案;(2)根据不等式的性质1,进而得出答案;(3)根据不等式的性质2,进而得出答案;(4)根据不等式的性质1,进而得出答案.【解答】解:(1)因为7.5>5.7,所以﹣7.5<﹣5.7,正确,利用不等式两边同乘以一个负数不等号的方向改变;(2)因为a+8>4,所以a>﹣4,正确,利用不等式两边同加上或减去同一个数不等号的方向不变;(3)因为4a>4b,所以a>b;正确,利用不等式两边同除以一个数不等号的方向不变;(4)因为﹣1>﹣2,所以﹣a﹣1>﹣a﹣2,正确,利用不等式两边同加上或减去同一个数不等号的方向不变.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键. 3.写出使下列推理成立的条件.(1)4m>2m: m>0 ;(2)如果a>b,那么ac<bc: c<0 ;(3)如果a>b,那么ac2>bc2: c≠0 ;(4)如果ax<b,那么x>: a<0 .【考点】不等式的性质.【分析】(1)根据不等式的基本性质得出即可;(2)根据不等式的基本性质(不等式的两边都乘以同一个负数,不等号的方向要改变)得出即可;(3)根据不等式的基本性质(不等式的两边都乘以同一个正数,不等号的方向不发生变化)得出即可;(4)根据不等式的基本性质(不等式的两边都乘以同一个负数,不等号的方向要改变)得出即可.第18页(共18页)
【解答】解:(1)当m>0时,4m>2m,故答案为:m>0;(2)∵a>b,c<0,∴ac<bc,故答案为:c<0;(3)当c≠0时,当a>b时,ac2>bc2,故答案为:c≠0;(4)当a<0时,∵ax<b,∴x>,故答案为:a<0【点评】本题考查了不等式的基本性质的应用,注意:不等式的基本性质是:①不等式的两边都加上或都减去同一个数或同一个整式,不等式的符号不改变;②不等式的两边都乘以同一个正数,不等号的方向不改变;③不等式的两边都乘以同一个负数,不等号的方向要改变. 4.若a>b,c<0,用“>”或“<”填空:(1)a+3 > b+1;(2)﹣a < ﹣b;(3)ac2 > bc2;(4) > .【考点】不等式的性质.【分析】(1)根据不等式的性质1,进而得出答案;(2)根据不等式的性质2,进而得出答案;(3)根据不等式的性质2,进而得出答案;(4)根据不等式的性质2,进而得出答案.【解答】解:(1)a+3>b+1;第18页(共18页)
(2)﹣a<﹣b;(3)ac2>bc2;(4)>.故答案为:(1)>,(2)<,(3)>,(4)>.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键. 5.若是一元一次不等式,则m= 1 .【考点】一元一次不等式的定义.【分析】根据一元一次不等式的定义,2m﹣1=1,求解即可.【解答】解:根据题意2m﹣1=1,解得m=1.故答案为:m=1.【点评】本题考查一元一次不等式定义的“未知数的最高次数为1次”这一条件. 6.不等式x﹣1≥﹣3的解集为 x≥﹣2 ,其中不等式的负整数解为 ﹣2,﹣1 .【考点】一元一次不等式的整数解.【分析】首先移项,然后合并同类项即可解不等式,然后确定不等式的负整数解即可.【解答】解:移项,得:x≥﹣3+1,即x≥﹣2.则负整数解是:﹣2,﹣1.故答案是:x≥﹣2;﹣2,﹣1.【点评】本题考查了一元一次不等式的整数解,正确解不等式是关键. 7.不等式3(x+1)≥5x﹣3的正整数解是 1,2,3 .【考点】一元一次不等式组的整数解.【专题】计算题.【分析】先求出不等式的解集,然后求其正整数解.【解答】解:∵不等式3(x+1)≥5x﹣3的解集是x≤3,∴正整数解是1,2,3.第18页(共18页)
【点评】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变. 8.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是 k<﹣ .【考点】解一元一次不等式.【专题】计算题.【分析】本题中不等式的解的不等号与原不等式的不等号正好相反,所以,2k+1<0,据此即可求得k的取值范围.【解答】解:∵不等式(2k+1)x<2k+1的解集是x>1,∴2k+1<0,∴k<﹣.【点评】本题考查的是不等式两边同除以一个负数时不等号的方向改变. 9.解不等式:2(x+1)﹣3(x+2)<0;并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】去括号整理后,应把含x的项移到不等号的左边,移项及合并后两边都除以不等号的系数即可.【解答】解:去括号得,2x+2﹣3x﹣6<0,移项及合并得,﹣x<4,系数化为1,得x>﹣4.解集在数轴上表示为:【点评】本题需注意的知识点是:在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除. 二、选择10.下列不等式变形正确的是( )第18页(共18页)
A.由4x﹣1>2,得4x>1B.由5x>3,得x>C.由>0,得y>2D.由﹣2x<4,得x>﹣2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A,根据不等式的性质2,可判断B、C,根据不等式的性质3,可判断D.【解答】解:A4x﹣1>2,4x>3,故A错误;B5x>3,x>,故B错误;C,y>0,故C错误;D﹣2x<4,x>﹣2,故D正确;故选:D.【点评】本题考查了不等式的性质,注意不等式的性质3,两边都乘或除以同一个负数,不等号的方向改变. 11.若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有( )A.1个B.2个C.3个D.4个【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:∵a<b∴a+1<b+1<b+2因而①一定成立;a<b<0即a,b同号.并且|a|>|b|因而②>1一定成立;④<一定不成立;∵a<b<0即a,b都是负数.∴ab>0a+b<0∴③a+b<ab一定成立.正确的有①②③共有3个式子成立.故选C.【点评】本题比较简单的作法是用特殊值法,如令a=﹣3b=﹣2代入各式看是否成立. 12.若不等式ax>b的解集是x>,则a的范围是( )第18页(共18页)
A.a≥0B.a≤0C.a>0D.a<0【考点】解一元一次不等式.【专题】常规题型.【分析】根据不等式的性质2,不等式的两边同时除以一个正数,不等号的方向不改变,即a>0.【解答】解:∵不等式ax>b的解集是x>,∴a>0,故选C.【点评】本题考查了利用不等式的基本性质解不等式的能力,要熟练掌握. 三、解答13.根据不等式的性质,把下列不等式化为“x>a”或“x<a”的形式,并说出每次变形的依据.(1)x+3<﹣2;(2)x>﹣1;(3)7x>6x﹣4;(4)﹣x﹣1<0.【考点】不等式的性质.【分析】(1)先移项,再合并即可;(2)不等式的两边都乘以3即可;(3)先移项,再合并即可;(4)先移项,再不等式的两边都乘以﹣1即可.【解答】解:(1)∵x+3<﹣2,∴x<﹣2﹣3(不等式的基本性质1),∴x<﹣5(合并同类项);(2)∵x>﹣1,∴x>﹣3(不等式的基本性质2);第18页(共18页)
(3)∵7x>6x﹣4,∴7x﹣6x>﹣4(不等式的基本性质1),x>﹣4(合并同类项);(4)﹣x﹣1<0,﹣x<1(不等式的基本性质1),x>﹣1(不等式的基本性质3).【点评】本题考查了不等式的基本性质的应用,注意:不等式的基本性质是:①不等式的两边都加上或都减去同一个数或同一个整式,不等式的符号不改变;②不等式的两边都乘以同一个正数,不等号的方向不改变;③不等式的两边都乘以同一个负数,不等号的方向要改变. 14.(1)甲在不等式﹣10<0的两边都乘﹣1,竟得到10<0!为什么?(2)乙在不等式2x>5x两边同除以x,竟得到2>5!又是为什么?(3)你能利用不等式的性质将不等式“a>b”变形为“b<a”吗?试试看.【考点】不等式的性质.【分析】(1)根据不等式的基本性质3判断即可;(2)根据已知求出x是负数,根据不等式的基本性质3判断即可;(3)移项,再两边都除以﹣1即可.【解答】解:(1)不对,不等式的两边都乘以﹣1,不等式的符号要改变,即10>0;(2)2x>5x∴2x﹣5x>0,﹣3x>0,∴x<0,即不等式的两边都除以一个负数x,不等式的符号要改变,即2<5;(3)能,如∵a>b,∴﹣b>﹣a,∴b<a.第18页(共18页)
【点评】本题考查了不等式的基本性质的应用,注意:不等式的基本性质是:①不等式的两边都加上或都减去同一个数或同一个整式,不等式的符号不改变;②不等式的两边都乘以同一个正数,不等号的方向不改变;③不等式的两边都乘以同一个负数,不等号的方向要改变. 15.一辆12个座位的汽车上已有4名乘客,到一个站后又上来x个人,车上仍有空位,可以得到怎样的不等式?并判断x的取值范围.【考点】由实际问题抽象出一元一次不等式.【分析】根据题意可得:车上的原有人数+上来x个人<12,再解不等式即可.【解答】解:由题意得:4+x<12,解得:x<8.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,列出不等式. 16.比较两个数的大小可以通过它们的差来判断.例如要比较a和b的大小,那么:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反之也成立.因此,我们常常将要比较的两个数先作差计算,再根据差的符号来判断这两个数的大小.根据上述结论,试比较x4+2x2+2与x4+x2+2x的大小关系.【考点】不等式的性质.【分析】先作差:(x4+2x2+2)﹣(x4+x2+2x),然后根据差的符号来判断这两个数的大小.【解答】解:∵(x4+2x2+2)﹣(x4+x2+2x),=x4+2x2+2﹣x4﹣x2﹣2x=x2﹣2x+2=(x﹣1)2+1.在实数范围内,无论x取何值,(x﹣1)2+1>0总成立,∴∵(x4+2x2+2)﹣(x4+x2+2x)>0,第18页(共18页)
∴x4+2x2+2>x4+x2+2x.【点评】本题考查了不等式的性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 17.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.【考点】不等式的性质.【专题】计算题.【分析】(1)根据等式的两边同时乘以(或除以)同一个正数,不等号的方向不变进行判断;(2)根据等式的两边同时乘以(或除以)同一个正数,不等号的方向不变进行判断;(3)根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行判断.【解答】解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 18.解下列不等式,并把解集在数轴上表示出来:(1)7+x>3;第18页(共18页)
(2)x<1;(3)4+3x>6﹣2x.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】(1)通过移项可以求得x的取值范围;(2)化未知数系数为1来求x的取值范围;(3)通过移项、合并同类项,化系数为1来求x的取值范围【解答】解:(1)移项,得x>﹣4.表示在数轴上为:;(2)不等式的两边同时乘以﹣2,不等号的方向改变,即x>﹣2,表示在数轴上是:;(3)移项、合并同类项,得5x>2,化系数为1,得x>2.5.表示在数轴上为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 19.解答下列各题:(1)x取何值时,代数式3x+2的值不大于代数式4x+3的值?第18页(共18页)
(2)当m为何值时,关于x的方程x﹣1=m的解不小于3?(3)求不等式2x﹣3<5的最大整数解.【考点】解一元一次不等式;一元一次不等式的整数解.【分析】(1)先根据代数式3x+2的值不大于代数式4x+3的值列出关于x的不等式,求出x的取值范围即可;(2)先把m当作已知条件求出x的值,再根据x的值不小于3得出关于m的不等式,求出m的值即可;(3)先求出不等式的解集,再得出x的最大整数解即可.【解答】解:(1)∵代数式3x+2的值不大于代数式4x+3的值,∴3x+2≤4x+3,解得x≥﹣1.(2)解方程得,x=2m+2,∵方程的解不小于3,∴2m+2≥3,即2m≥1,解得m≥;(3)移项得,2x<5+3,合并同类项得,2x<8,x的系数化为1得,x<4.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键. 20.某辆汽车油箱中原有油60L,汽车每行驶1km耗油0.08L,请你估计行驶多少千米后油箱中的油少于20L.【考点】一元一次不等式的应用.【分析】读出题意,根据关系式,剩余油量=总油量﹣耗油量,列出关系式解答即可.【解答】解:设估计行驶x千米后油箱中的油少于20L.依题意,得60﹣0.08x<20,解得,x>500.答:估计行驶500千米后油箱中的油少于20L.第18页(共18页)
【点评】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解. 21.小丽在学了这节内容后,总结出:解一元一次不等式,就是利用不等式的性质把所要求的不等式转化为“x>a”或“x<a”的形式.你同意小丽的观点吗?请自编、自解一个一元一次不等式,再体会小丽的说法.【考点】解一元一次不等式.【分析】根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.【解答】解:同意小丽的观点.如2x≥x+2,移项得2x﹣x≥2,解得x≥2.【点评】考查了解一元一次不等式,在解一元一次不等式的步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 第18页(共18页)
第18页(共18页)