1.3.1柱体、锥体、台体的表面积和体积
在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?几何体表面积展开图平面图形面积空间问题平面问题提出问题
正方体、长方体是由多个平面围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.引入新课棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?探究
棱柱的侧面展开图是什么?如何计算它的表面积?h棱柱的展开图正棱柱的侧面展开图
棱锥的侧面展开图是什么?如何计算它的表面积?棱锥的展开图正棱锥的侧面展开图
棱锥的侧面展开图是什么?如何计算它的表面积?棱锥的展开图侧面展开正棱锥的侧面展开图
棱台的侧面展开图是什么?如何计算它的表面积?棱锥的展开图侧面展开h'h'正棱台的侧面展开图
棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和.h'
例1已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,所以:因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作,典型例题
圆柱的表面积O圆柱的侧面展开图是矩形
圆锥的表面积圆锥的侧面展开图是扇形O
圆台的表面积参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.OO’圆台的侧面展开图是扇环
三者之间关系OO’OO圆柱、圆锥、圆台三者的表面积公式之间有什么关系?r’=r上底扩大r’=0上底缩小
例2如图,一个圆台形花盆盆口直径20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm.那么花盆的表面积约是多少平方厘米(取3.14,结果精确到1)?解:由圆台的表面积公式得花盆的表面积:答:花盆的表面积约是999.典型例题
练习1.若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是()A.B.C.D.A2.已知圆锥的全面积是底面积的3倍,那么这个圆锥的侧面积展开图----扇形的圆心角为__________度180
以前学过特殊的棱柱——正方体、长方体以及圆柱的体积公式,它们的体积公式可以统一为:(S为底面面积,h为高).柱体体积一般棱柱体积也是:其中S为底面面积,h为棱柱的高.
圆锥的体积公式:(其中S为底面面积,h为高)圆锥体积等于同底等高的圆柱的体积的.圆锥体积
(其中S为底面面积,h为高)由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的.经过探究得知,棱锥也是同底等高的棱柱体积的.即棱锥的体积:锥体体积
台体体积由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差.得到圆台(棱台)的体积公式(过程略).根据台体的特征,如何求台体的体积?
棱台(圆台)的体积公式其中,分别为上、下底面面积,h为圆台(棱台)的高.台体体积
柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,h为柱体高S分别为上、下底面面积,h为台体高S为底面面积,h为锥体高台体体积上底扩大上底缩小
例3有一堆规格相同的铁制(铁的密度是)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(取3.14)?解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:所以螺帽的个数为(个)答:这堆螺帽大约有252个.典型例题
柱体、锥体、台体的表面积各面面积之和知识小结展开图圆台圆柱圆锥
柱体、锥体、台体的体积锥体台体柱体知识小结