福建省漳州市芗城中学高中数学1.3.1柱体、锥体、台体的体积教案新人教A版必修2一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的体积的求法。(2)能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系。2、过程与方法通过对照比较,理顺柱体、锥体、台体三者之间的体积的关系。3、情感态度与价值观:感受到几何体体积的求解过程,对自己空间思维能力的影响,从而增强学习的积极性。二、教学重点:柱体、锥体、台体的体积的计算;难点:台体体积公式的推导。三、学法指导:通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。四、教学过程(一)复习引入问题:正方体、长方体、圆柱的体积公式是什么?它们之间有什么共同的特点?,,;它们的体积公式可以统一为V=Sh(S为底面面积,h为高)。(二)讲授新课1、柱体的体积一般柱体的体积也是V=Sh,其中S为底面面积,h为棱柱的高。棱柱(圆柱)的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这点与垂足(垂线与底面的交点)之间的距离。2、锥体的体积圆锥的体积公式是(S为底面面积,h为高),它是同底等高的圆柱的体积的。棱锥的体积也是同底等高的棱柱体积的,即棱锥的体积(S为底面面积,h为高)。棱锥与圆锥的体积公式类似,都是底面面积乘高的。棱锥(圆锥)的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离。3、台体的体积由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差,得到员台(棱台)的体积公式:,其中,S分别为上、下底面面积,h为圆台(棱台)的高。圆台(棱台)的高是指两个底面之间的距离。4、比较柱体、锥体、台体的体积公式之间存在的关系:
(三)例题分析例:有一堆规格相同的铁制(铁的密度是7.8g/cm3)六角螺帽共重5.8g,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(π取3.14,可用计算器)?分析:六角螺帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积。注:求组合体的表面积和体积时,要注意组合体的结构特征,避免重叠和交叉等。补充练习:1、圆柱的侧面展开图是边长为2和4的矩形,则圆柱的体积是。2、如果轴截面为正方形的圆柱的侧面积为S,那么圆柱的体积等于()(A)(B)(C)(D)3、三棱锥的三条侧棱两两垂直,三个侧面的面积分别为6,4,3,则三棱锥的体积为。4、棱台的两个底面面积分别是245cm2和80cm2,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。5、一个圆柱形贮油桶,当它水平放置时,桶里油所在的轴弧恰好占桶的底面周长的,那么当油桶竖直放置时,油的高度和桶的高度的比值是。6、将长为2πdm,宽为πdm的长方形纸片围成一个容器(不考虑底面,也不考虑粘接处),立放于桌面上,下面四种方案中,容积最大的是()(A)直三棱柱(B)直四棱柱(C)高为πdm的圆柱(D)高为2πdm的圆柱7、用一块长2米宽1米的矩形木板,在底面两直线的夹角为60的墙角处围出一个直棱柱形的谷仓,试问怎样围才能使谷仓的容积最大?求出谷仓容积的最大值。(五)课堂小结本节课学习了柱体、锥体与台体的体积的结构和求解方法及公式。用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。(六)课后作业:P28,习题1.3,A组3、4,补充练习。教学反思