高中数学人教A版必修2 第一章 空间几何体 1.3.1 柱体、锥体、台体的表面积与体积 教案
加入VIP免费下载

高中数学人教A版必修2 第一章 空间几何体 1.3.1 柱体、锥体、台体的表面积与体积 教案

ID:1218238

大小:655.5 KB

页数:15页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积整体设计教学分析本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题.教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形,圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系.由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下.关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等;②一个几何体的体积等于它的各部分体积的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积公式的推导是建立在等体积概念之上的.柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论.与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系,是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式.值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来增强空间想象能力.三维目标 1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.2.掌握简单几何体的体积与表面积的求法,提高学生的运算能力,培养学生转化、化归以及类比的能力.重点难点教学重点:了解柱体、锥体、台体的表面积和体积计算公式及其应用.教学难点:表面积和体积计算公式的应用.课时安排1课时教学过程导入新课思路1.在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?(引导学生回忆,互相交流,教师归类)几何体的表面积等于它的展开图的面积,那么,柱体、锥体、台体的侧面展开图是怎样的?你能否计算?思路2.被誉为世界七大奇迹之首的胡夫大金字塔,在1889年巴黎埃菲尔铁塔落成前的四千多年的漫长岁月中,胡夫大金字塔一直是世界上最高的建筑物.在四千多年前生产工具很落后的中古时代,埃及人是怎样采集、搬运数量如此之多,每块又如此之重的巨石垒成如此宏伟的大金字塔,真是一个十分难解的谜.胡夫大金字塔是一个正四棱锥外形的建筑,塔底边长230米,塔高146.5米,你能计算建此金字塔用了多少石块吗?推进新课新知探究提出问题①在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图(图1),你知道上述几何体的展开图与其表面积的关系吗?正方体及其展开图(1)长方体及其展开图(2)图1②棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?③如何根据圆柱、圆锥的几何结构特征,求它们的表面积?④联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为l,你能计算出它的表面积吗?⑤圆柱、圆锥和圆台的表面积之间有什么关系?活动:①学生讨论和回顾长方体和正方体的表面积公式.②学生思考几何体的表面积的含义,教师提示就是求各个面的面积的和.③让学生思考圆柱和圆锥的侧面展开图的形状.④学生思考圆台的侧面展开图的形状.⑤提示学生用动态的观点看待这个问题.讨论结果:①正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.②棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和. ③它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.我们知道,圆柱的侧面展开图是一个矩形(图2).如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积S=2πr2+2πrl=2πr(r+l).图2图3圆锥的侧面展开图是一个扇形(图3).如果圆锥的底面半径为r,母线长为l,那么它的表面积S=πr2+πrl=πr(r+l).点评:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.④圆台的侧面展开图是一个扇环(图4),它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r2+r′2+rl+r′l).图4⑤圆柱、圆锥、圆台侧面积的关系:圆柱和圆锥都可以看作是圆台退化而成的几何体.圆柱可以看作是上下底面全等的圆台,圆锥可看作是上底面退化成一点的圆台,观察它们的侧面积,不难发现:S圆柱表=2πr(r+l)S圆台表=π(r1l+r2l+r12+r22)S圆锥表=πr(r+l).从上面可以很清楚地看出圆柱和圆锥的侧面积公式都可以看作由圆台侧面积公式演变而来.提出问题①回顾长方体、正方体和圆柱的体积公式,你能将它们统一成一种形式吗?并依次类比出柱体的体积公式?②比较柱体、锥体、台体的体积公式:V柱体=Sh(S为底面积,h为柱体的高);V锥体=(S为底面积,h为锥体的高);V台体=h(S′,S分别为上、下底面积,h为台体的高).你能发现三者之间的关系吗?柱体、锥体是否可以看作“特殊”的台体?其体积公式是否可以看作台体体积公式的“特殊”形式?活动:①让学生思考和讨论交流长方体、正方体和圆柱的体积公式.②让学生类比圆柱、圆锥和圆台的表面积的关系?讨论结果:①棱长为a的正方体的体积V=a3=a2a=Sh;长方体的长、宽和高分别为a,b,c,其体积为V=abc=(ab)c=Sh; 底面半径为r高为h的圆柱的体积是V=πr2h=Sh,可以类比,一般的柱体的体积也是V=Sh,其中S是底面面积,h为柱体的高.圆锥的体积公式是V=(S为底面面积,h为高),它是同底等高的圆柱的体积的.棱锥的体积也是同底等高的棱柱体积的,即棱锥的体积V=(S为底面面积,h为高).由此可见,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是底面面积乘高的.由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差,得到圆台(棱台)的体积公式V=(S′++S)h,其中S′,S分别为上、下底面面积,h为圆台(棱台)高.注意:不要求推导公式,也不要求记忆.②柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.因此柱体、锥体可以看作“特殊”的台体.当S′=0时,台体的体积公式变为锥体的体积公式;当S′=S时,台体的体积公式变为柱体的体积公式,因此,柱体、锥体的体积公式可以看作台体体积公式的“特殊”形式.柱体和锥体可以看作由台体变化得到,柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体,因此很容易得出它们之间的体积关系,如图5:图5应用示例思路1例1已知棱长为a,各面均为等边三角形的四面体S—ABC(图6),求它的表面积.图6活动:回顾几何体的表面积含义和求法.分析:由于四面体S—ABC的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍.解:先求△SBC的面积,过点S作SD⊥BC,交BC于点D.因为BC=a,SD=,所以S△SBC=BC·SD=. 因此,四面体S—ABC的表面积S=4×.点评:本题主要考查多面体的表面积的求法.变式训练1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r,圆柱侧面积为S,求圆锥的侧面积.解:设圆锥的母线长为l,因为圆柱的侧面积为S,圆柱的底面半径为r,即S圆柱侧=S,根据圆柱的侧面积公式可得:圆柱的母线(高)长为,由题意得圆锥的高为,又圆锥的底面半径为r,根据勾股定理,圆锥的母线长l=,根据圆锥的侧面积公式得S圆锥侧=πrl=π·r·.2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是()A.1∶2∶3B.1∶7∶19C.3∶4∶5D.1∶9∶27分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为()∶[·2h]∶[·3h]=1∶8∶27,所以圆锥被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19.答案:B3.三棱锥V—ABC的中截面是△A1B1C1,则三棱锥V—A1B1C1与三棱锥A—A1BC的体积之比是()A.1∶2B.1∶4C.1∶6D.1∶8分析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为1∶4,将三棱锥A—A1BC转化为三棱锥A1—ABC,这样三棱锥V—A1B1C1与三棱锥A1—ABC的高相等,底面积之比为1∶4,于是其体积之比为1∶4.答案:B例2如图7,一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长为15cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(π取3.14,结果精确到1毫升,可用计算器)图7活动:学生思考和讨论如何转化为数学问题.只要求出每个花盆外壁的表面积,就可以求出油漆的用量.而花盆外壁的表面积等于花盆的侧面积加上底面积,再减去底面圆孔的面积.解:如图7,由圆台的表面积公式得一个花盆外壁的表面积S=π[]-π()2≈1000(cm2)=0.1(m2).涂100个这样的花盆需油漆:0.1×100×100=1000(毫升).答:涂100个这样的花盆需要1000毫升油漆. 点评:本题主要考查几何体的表面积公式及其应用.变式训练1.有位油漆工用一把长度为50cm,横截面半径为10cm的圆柱形刷子给一块面积为10m2的木板涂油漆,且圆柱形刷子以每秒5周的速度在木板上匀速滚动前进,则油漆工完成任务所需的时间是多少?(精确到0.01秒)解:圆柱形刷子滚动一周涂过的面积就等于圆柱的侧面积,∵圆柱的侧面积为S侧=2πrl=2π·0.1·0.5=0.1πm2,又∵圆柱形刷子以每秒5周匀速滚动,∴圆柱形刷子每秒滚过的面积为0.5πm2,因此油漆工完成任务所需的时间t=≈6.37秒.点评:本题虽然是实际问题,但是通过仔细分析后,还是归为圆柱的侧面积问题.解决此题的关键是注意到圆柱形刷子滚动一周所经过的面积就相当于把圆柱的侧面展开的面积,即滚动一周所经过的面积等于圆柱的侧面积.从而使问题迎刃而解.2.(2007山东滨州一模,文14)已知三棱锥O—ABC中,OA、OB、OC两两垂直,OC=1,OA=x,OB=y,且x+y=4,则三棱锥体积的最大值是___________.分析:由题意得三棱锥的体积是(x-2)2+,由于x>0,则当x=2时,三棱锥的体积取最大值.答案:例3有一堆规格相同的铁制(铁的密度是7.8g/cm3)六角螺帽(图8)共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个?(π取3.14)图8活动:让学生讨论和交流如何转化为数学问题.六角帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积.解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=×122×6×10-3.14×()2×10≈2956(mm3)=2.956(cm3).所以螺帽的个数为5.8×1000÷(7.8×2.956)≈252(个).答:这堆螺帽大约有252个.点评:本题主要考查几何体的体积公式及其应用.变式训练如图9,有个水平放置圆台形容器,上、下底面半径分别为2分米,4分米,高为5分米,现以每秒3立方分米的速度往容器里面注水,当水面的高度为3分米时,求所用的时间.(精确到0.01秒) 图9解:如图10,设水面的半径为r,则EH=r-2分米,BG=2分米,图10在△ABG中,∵EH∥BG,∴.∵AH=2分米,∴.∴r=分米.∴当水面的高度为3分米时,容器中水的体积为V水=·3[()2+×4+42]=立方分米,∴所用的时间为≈36.69秒.答:所用的时间为36.69秒.思路2例1(2007山东烟台高三期末统考,理8)如图11所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为()图11A.1B.C.D.活动:让学生将三视图还原为实物图,讨论和交流该几何体的结构特征.分析:根据三视图,可知该几何体是三棱锥,图12所示为该三棱锥的直观图,并且侧棱PA⊥AB,PA⊥AC,AB⊥AC.则该三棱锥的高是PA,底面三角形是直角三角形,所以这个几何体的体积为V=. 图12答案:D点评:本题主要考查几何体的三视图和体积.给出几何体的三视图,求该几何体的体积或面积时,首先根据三视图确定该几何体的结构特征,再利用公式求得.此类题目成为新课标高考的热点,应引起重视.变式训练1.(2007山东泰安高三期末统考,理8)若一个正三棱柱的三视图如图13所示,则这个正三棱柱的表面积为()图13A.B.C.D.分析:该正三棱柱的直观图如图14所示,且底面等边三角形的高为,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为3×4×2+2××4×=24+.图14答案:C2.(2007山东潍坊高三期末统考,文3)如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为()A.B.C.D.分析:由三视图知该几何体是圆锥,且轴截面是等边三角形,其边长等于底面直径2,则圆锥的高是轴截面等边三角形的高为,所以这个几何体的体积为V=.答案:A3.(2007广东高考,文17)已知某几何体的俯视图是如图15所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. 图15(1)求该几何体的体积V;(2)求该几何体的侧面积S.解:由三视图可知该几何体是一个底面边长分别为6、8的矩形,高为4的四棱锥.设底面矩形为ABCD.如图16所示,AB=8,BC=6,高VO=4.图16(1)V=×(8×6)×4=64.(2)设四棱锥侧面VAD、VBC是全等的等腰三角形,侧面VAB、VCD也是全等的等腰三角形,在△VBC中,BC边上的高为h1=,在△VAB中,AB边上的高为h2==5.所以此几何体的侧面积S==40+.点评:高考试题中对面积和体积的考查有三种方式,一是给出三视图,求其面积或体积;二是与的组合体有关的面积和体积的计算;三是在解答题中,作为最后一问.例2图17所示的几何体是一棱长为4cm的正方体,若在它的各个面的中心位置上,各打一个直径为2cm、深为1cm的圆柱形的孔,求打孔后几何体的表面积是多少?(π取3.14)图17活动:因为正方体的棱长为4cm,而孔深只有1cm,所以正方体没有被打透.这样一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积,这六个圆柱的高为1cm,底面圆的半径为1cm.解:正方体的表面积为16×6=96(cm2),一个圆柱的侧面积为2π×1×1=6.28(cm2),则打孔后几何体的表面积为96+6.28×6=133.68(cm2).答:几何体的表面积为133.68cm2.点评: 本题主要考查正方体、圆柱的表面积.求几何体的表面积问题,通常将所给几何体分成基本的柱、锥、台,再通过这些基本柱、锥、台的表面积,进行求和或作差,从而获得几何体的表面积.本题中将几何体的表面积表达为正方体的表面积与六个圆柱侧面积的和是非常有创意的想法,如果忽略正方体没有被打透这一点,思考就会变得复杂,当然结果也会是错误的.变式训练图18所示是由18个边长为1cm的小正方体拼成的几何体,求此几何体的表面积.图18分析:从图18中可以看出,18个小正方体一共摆了三层,第一层2个,第二层7个,因为18-7-2=9,所以第三层摆了9个.另外,上、下两个面的表面积是相同的,同样,前、后,左、右两个面的表面积也是分别相同的.解:因为小正方体的棱长是1cm,所以上面的表面积为12×9=9(cm2),前面的表面积为12×8=8(cm2),左面的表面积为12×7=7(cm2),则此几何体的表面积为9×2+8×2+7×2=48(cm2).答:此几何体的表面积为48cm2.知能训练1.正方体的表面积是96,则正方体的体积是()A.B.64C.16D.96分析:设正方体的棱长为a,则6a2=96,解得a=4,则正方体的体积是a3=64.答案:B2.(2007山东临沂高三期末统考,文2)如图19所示,圆锥的底面半径为1,高为,则圆锥的表面积为()A.πB.2πC.3πD.4π分析:设圆锥的母线长为l,则l==2,所以圆锥的表面积为S=π×1×(1+2)=3π.答案:C3.正三棱锥的底面边长为3,侧棱长为,则这个正三棱锥的体积是()A.B.C.D.分析:可得正三棱锥的高h==3,于是V=.答案:D4.若圆柱的高扩大为原来的4倍,底面半径不变,则圆柱的体积扩大为原来的_________倍;若圆柱的高不变,底面半径扩大为原来的4倍,则圆柱的体积扩大为原来的_________倍.分析:圆柱的体积公式为V圆柱=πr2h,底面半径不变,高扩大为原来的4倍,其体积也变为原来的4倍;当圆柱的高不变,底面半径扩大为原来的4倍时,其体积变为原来的42=16倍.答案:4165.图20是一个正方体,H、G、F分别是棱AB、AD、AA1的中点.现在沿△GFH所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几? 图20分析:因为锯掉的是正方体的一个角,所以HA与AG、AF都垂直,即HA垂直于立方体的上底面,实际上锯掉的这个角,是以三角形AGF为底面,H为顶点的一个三棱锥.解:设正方体的棱长为a,则正方体的体积为a3.三棱锥的底面是Rt△AGF,即∠FAG为90°,G、F又分别为AD、AA1的中点,所以AF=AG=.所以△AGF的面积为.又因AH是三棱锥的高,H又是AB的中点,所以AH=.所以锯掉的部分的体积为.又因,所以锯掉的那块的体积是原正方体体积的.6.(2007山东临沂高三期末考试,理13)已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面面积是____________.分析:如图21,设圆锥底面半径为r,母线长为l,由题意得解得r=,所以圆锥的底面积为πr2=.图21答案:7.如图22,一个正三棱柱容器,底面边长为a,高为2a,内装水若干,将容器放倒,把一个侧面作为底面,如图23,这时水面恰好为中截面,则图22中容器内水面的高度是_________.图22图23 分析:图22中容器内水面的高度为h,水的体积为V,则V=S△ABCh.又图23中水组成了一个直四棱柱,其底面积为,高度为2a,则V=·2a,∴h=.答案:8.圆台的两个底面半径分别为2、4,截得这个圆台的圆锥的高为6,则这个圆台的体积是_____________.分析:设这个圆台的高为h,画出圆台的轴截面,可得,解得h=3,所以这个圆台的体积是(22+2×4+42)×3=28π.答案:28π9.已知某个几何体的三视图如图24,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()图24A.cm3B.cm3C.2000cm3D.4000cm3分析:该几何体是四棱锥,并且长为20cm的一条侧棱垂直于底面,所以四棱锥的高为20cm,底面是边长为20cm的正方形(如俯视图),所以底面积是20×20=400cm2,所以该几何体的体积是×400×20=cm3.答案:B拓展提升问题:有两个相同的直三棱柱,高为,底面三角形的三边长分别为3a,4a,5a(a>0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a的取值范围是___________.探究:两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况:四棱柱有一种,就是边长为5a的边重合在一起,表面积为24a2+28,三棱柱有两种,边长为4a的边重合在一起,表面积为24a2+32,边长为3a的边重合在一起,表面积为24a2+36,两个相同的直三棱柱竖直放在一起,有一种情况,表面积为12a2+48,最小的是一个四棱柱,这说明24a2+28<12a2+4812a2<200<a<. 答案:0<a<课堂小结本节课学习了:1.柱体、锥体、台体的表面积和体积公式.2.应用体积公式解决有关问题.作业习题1.3A组第1、2、3题.设计感想新课标对本节内容的要求是了解棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式),也就是说对体积和面积公式的推导、证明和记忆不作要求,按通常的理解是会求体积和面积,以及很简单的应用即可.因此本节教学设计中就体现了这一点,没有过多地在公式的推导上“纠缠不休”,把重点放在了对公式的简单应用上.由于本节图形较多,建议在使用时,尽量结合信息技术. 德育教育融入小学课堂教学的有效对策随着我国小学德育教育不断提档升级,在小学课堂教学中进行德育渗透,日益成为现代小学品德教育的重要目标与方向。在小学教育阶段,是学生形成自身道德体系的关键时期,利用小学课堂教学开展德育教育,可以实现小学生个人思想品格的形成与塑造。在小学课堂教学体系中,蕴含着大量的德育知识与德育教育资源,如何将德育教育与课堂教学有机融合,是现代德育教学探索的主要方向,同时也是我们日常教学的出发点和着力点。一、营造良好的课堂氛围,充分利用教学资源在小学教育阶段,课堂是培养和激发学生道德意识的重要载体和平台。在道德培养的过程中,最为重要的就是要打造新型民主课堂,让学生在课堂中准确找到自己的位置,明确自身在课堂以及生活中权利义务,强化提升个人道德意识,构建自身的认知体系。在小学教学课堂上,教师要向学生灌输道德意识,在向学生提出要求的过程当中,要构建平等的话语体系,与学生进行平等对话,共同探讨和研究问题,帮助学生在课堂上培养自己的道德思维和道德意识,将自己当成课堂一份子,关注和理解课堂以及生活中出现的道德问题。举例来说,在小学语文六年级上册中,有一篇課文为《文天祥》,在开展讲解过程中,教师可以有效融入爱国主义教育,并引申相关知识,提升学生道德水平,激发学生爱国热情。在语文课堂教学中融入相应的知识,可以减小学生对于单纯宣教的抵触情绪,提高德育教育效果。此外,在小学语文五年级上册中,有课文《我的战友邱少云》,可以利用教学契机,提升学生爱国主义精神。二、打造生活化课堂,引导学生形成道德意识在小学课堂教学当中,要有效培养和提升学生的道德意识,要从打造生活化课堂入手。在传统的小学德育教学过程当中,教学效果不够理想,很多学生对于德育教育都存在一定的抵触情绪,因为小学德育教学内容与现实生活明显存在着脱节的现象,学生对于课堂和教学内容缺乏认同感,无法深刻感知德育课程蕴含的道理与教学内容。对于此,要想利用课堂教学培养学生的道德意识,要从构建生活化课堂入手,让德育课程教学内容与小学生的日常生活紧密相连,提升其认知能力,进而通过理论宣导,引起学生的联想,提高学生的思维能力,培养学生主体思想与德育意识。在教学实践当中,小学教师要充分运用多样化教学素材,内化于心、外化于形,让学生深入课堂体系当中,提升对于课堂教学内容的接受程度,提升道德培养效果。举例来说,在小学语文所学内容当中,很多文章都是开展的德育教育的合适载体,比如说,在小学语文六年级上册中,有一篇名为《将相和》的课文,教师在讲解课文过程当中,不仅仅要讲解历史典故,更要结合现实生活,引导学生学习古人的气度与胸襟,培养自己高尚的人格。因此,在德育教育过程中,教师要将生活习惯与德育教学内容紧密结合起来,创设有效的教学情境,搭建现实生活与道德知识之间的有机桥梁,提升学生的领悟力和自我认知能力,最终构建和培养自身的道德意识,帮助学生早日成为一名思想品德合格的优秀公民。三、强化课堂实践环节,唤醒学生道德意识在传统的小学德育教学当中,存在的一个重要教学问题就是实践环节的缺失,这也是制约学生道德意识培养与提升的一个瓶颈。在开展德育课程教学过程当中,要培养学生的公民意识,要将教学内容有效延伸与拓展,要与日常生活实践相互衔接,开展丰富多样的实践活动,引导学生在实践活动中体验生活,强化自身道德意识,找准自身角色定位,明确自身的权利义务,在不同生活角色中进行转换,提高自身素养,成为一名合格的社会公民。在开展课堂教学过程中,二、能力提升5、12.30万精确到()A.千位11、某学生在进行体检时,量得身高约为1.60米,他在登记时写成1.6米,从近似值的意义上去理解,测量结果与登记数是否一致?为什么?四、中考链接12、(呼和浩特中考题)用四舍五入法,分别按要求对0.05049分别取近似值,其中错误的()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)参考答案夯实基础1、D2、B3、50从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。以前练习写字,大多是在印有田字格或米字格的练习本上进行。教材中田字格或米字格里的范字我都认真仿写,其难度较大。我写起来标准难以掌握,不是靠上了,就是靠下了;不是偏左,就是偏右。后来在老师的指导下,我练习写字时,一开始观察字的笔画偏旁在格子中的位置,做到心中有数,然后才进行仿写,并要求把字尽量写大,要写满格子。这样写的好处有两个:一是培养我读帖习惯,可以从整体布局上纠正我不能把字写在格子正确位置上的毛病;二是促使我习惯写大字,这样指关节、腕关节运动幅度大,能增强手指、手腕的灵活性,有利于他们写字水平的持续提高。这使我意识到,写字必须做到以下几点:一、提高对练字重要性的认识。写字不仅能培养我们认真、细心的良好习惯,勤奋、刻苦的精神,健康、高雅的情趣,还能促进自己的注意力、观察力、意志力、审美力的发展。二、能使我的写字姿势得到训练。握笔姿势和坐姿是否正确,不但会影响字的美观和书写的速度,而且会影响自己的视力和身体的正常发育。写字时随时提醒自己写字时要做到“三个一”(眼离书本一尺远,胸离书桌一拳远,手离笔尖一寸远)。有意识地注意纠正自己的姿势,并持之以恒。逐渐地,这样就能保持正确、良好的写字姿势。三、做好进行自我评价。及时进行自评可以增强自己的兴趣和积极性,找出自己的缺点。在自我评价后,要找爸爸妈妈进行检查和督导,让大人谈谈哪些字写得好,好在哪里;哪些字写得不好,为什么没有写好。和家长共同评价、交流写字积极性会更高。四、在家长的鼓励和表扬下认真练习。练字是需要长时间坚持的,有时会觉得进步很慢,因而想弃练字。这时,我们要知道自己的练习是有成绩的,字是有明显进步的。这样,就会体会到成就感,也就会坚持练下去。在老师的帮助下,自己的努力下我的写字水平也提高了许多。2017年春季学期七年级数学下册5.3平行线的性质同步测试卷解析版一、选择题1.下列命题正确的是()A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等答案:C本题考查了平行线的性质根据平行线的性质依次判断即可。A、缺少两直线平行的前提,故本选项错误;B、缺少两直线平行的前提,故本选项错误;C、两直线平行,内错角相等,正确;D、两直线平行,同旁内角应该互补,故本选项错误;故选C.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是(  )一、填空题。1.在同一平面内,(    )的两条直线叫做平行线;两条直线相交成(   )时,这两条直线互相垂直。2.长方形的对边互相(    ),邻边互相(    )。3.(    )和(    )是特殊的平行四边形。4.下图中有(  )个平行四边形,有(  )个梯形。5.下面的每个图形中各有几组平行的线段。( )组 ( )组 ( )组  ( )组二、判断题。(正确的画“√”,错误的画“✕”)1.梯形只有一条高。(  )2.不相交的两条直线叫做平行线。(  )3.有一组对边平行的四边形叫做梯形。(  )4.如果两条直线都与同一条直线垂直,那么这两条直线互相平行。(  )5.伸缩门利用了平行四边形易变形的特性。(  )6.平行四边形有2种不同的高。(  )三、选择题。(在括号里填上正确答案的序号)1.两条直线相交形成的4个角可能都是(  )。A.锐角B.钝角C.直角D.平角2.平行四边形、梯形的高都是(  )。A.线段B.射线C.直线D.曲线3.有一个角是直角的平行四边形一定是(  )。A.直角梯形B.长方形C.正方形D.等腰梯形4.下图中,AB与CD相交成直角,正确的表述是(  )。A.AB是垂线B.CD是垂线C.AB和CD都是垂线D.CD是AB的垂线5.把一个平行四边形框架拉成一个长方形后,它的周长(  )。A.不变B.变小C.变大D.不能确定6.下面的图形中,两个(  )能拼成一个长方形。 A   B    C    D四、英语字母的笔画中有些是垂直的,有些是平行的。将下面10个字母填入合适的位置。五、画一画。1.过点A画已知直线的垂线。2.画出下面各图形的高。3.下图是一个正方形的两条边,请你把另外两条边画出来。4.请你在下面的梯形中画一条线段,将梯形分成一个平行四边形和一个三角形。你能想到几种方法?说说你的画法。5.李村要修一条小路与公路连接,如何修最短,请你画出来。新课标第一网六、解决问题。1.一个平行四边形的一条边长24厘米,比它的邻边短2厘米,这个平行四边形的周长是多少分米?2.一个等腰梯形的周长是72厘米,腰是15厘米,上底是18厘米。它的下底是多少厘米?3.如下图,一个平行四边形纸板沿高剪开,分成两个梯形,这两个梯形的周长之和比原来平行四边形的周长多多少厘米?4.小刚用4个完全一样的长方形纸片拼成了一个边长是30厘米的正方形(如下图)。中间形成的空白部分也是一个正方形,它的边长是6厘米。(1)你知道小刚用的长方形纸片的周长是多少吗(2)每个长方形的长与宽各是多少厘米第五单元测试卷参考答案一、1.不相交 直角2.平行 垂直3.长方形 正方形4.3 35.2 1 2 3二、1.✕ 2.✕ 3.✕ 4.✕ 5.√ 6.√三、1.C 2.A 3.B 4.D 5.A 6.A四、五、1.略 2.略 3.略4.2种。方法一: 方法二:5.六、1.(24+2+24)×2=100(厘米)100厘米=10分米2.72-15×2-18=24(厘米)3.4×2=8(厘米)4.(1)30×2=60(厘米) 提示:一条长+一条宽=30厘米。(2)长:(30+6)÷2=18(厘米)

10000+的老师在这里下载备课资料