福建省漳州市芗城中学高中数学1.3.1柱体、锥体、台体的表面积教案新人教A版必修2一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。(2)能运用公式求解柱体、锥体和台体的表面积,并且熟悉台体与柱体和锥体之间的转换关系。2、过程与方法(1)经历几何体的侧面展开过程,感知几何体的形状。(2)通过对照比较,理顺柱体、锥体、台体三者之间的面积的关系。3、情感态度与价值观:感受到几何体面积的求解过程,对自己空间思维能力的影响,从而增强学习的积极性。二、教学重点:柱体、锥体、台体的表面积的计算;难点:锥体、台体表面积公式的推导。三、学法指导:通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。四、教学过程(一)创设情境正方体与长方体的表面积,以及它们的展开图有什么关系?结论:多面体的表面积就是各个面的面积之和,也就是展开图的面积。(二)探究新知1、棱柱、棱锥、棱台的表面积:探究:棱柱、棱锥、棱台的展开图是什么?如何计算它们的表面积?把多面体展成平面图形,利用平面图形求面积的方法,求其表面积。例1、已知棱长为a,各面均为等边三角形的四面体S—ABC,求它的表面积。
分析:边长为a的正三角形的面积,所给几何体为正四面体,其四个面为全等的等边三角形,故其表面积为。2、圆柱、圆锥、圆台的表面积:探究:圆柱、圆锥、圆台的侧面展开图是什么?如何计算它们的表面积?圆柱的侧面展开图是一个矩形,如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为,侧面面积为,因此,其表面积为。圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r,母线长为l,那么它的表面积为。圆台的侧面展开图是一个扇环,如果圆台的上、下底面半径分别为,r,母线长为l,那么它的表面积为。例2、如图,一个圆台形花盆盆口直径为20,盆底直径为15,底部渗水圆孔直径为15,盆壁长15。为了美化花盆的外观,需要涂油漆。已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆?分析:只需求出每一个花盆外壁的表面积,就可求出油漆的用量,而花盆外壁的表面积等于花盆的侧面面积加上底面面积,再减去底面圆孔的面积。3、质疑答辩、排难解惑、发展思维组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(三)巩固深化,反馈矫正补充练习:1、已知圆锥的表面积为am2,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。2、若长方体的三条棱长的比是1:2:3,全面积为88,则这三条棱的长分别是,对角线的长为。3、等边圆柱的轴截面面积是S,则它的侧面积是。4、圆锥轴截面的顶角为120°,过顶点的截面三角形中,面积的最大值为2,则此圆锥的侧面积是。5、圆锥母线长为4,过顶点的截面三角形面积最大值为,则截面三角形顶角最大为。6、把一个半圆卷成圆锥的侧面,则圆锥母线间的最大夹角是。7、将半径为72的扇形OAB剪去小扇形OCD,余下的扇环面积为648π,将扇环围成一圆台,两底面半径之差为6,则圆台的上、下底面半径分别为。8、长方体AC1,若在A点有一只蜘蛛,C1处有一只苍蝇,蜘蛛要尽快地到达C1捕获苍蝇,问蜘蛛的最短路程是多少?9、圆锥PO的底面半径是1,母线长为3,M是底面圆周上任一点,从点M拉紧一条绳子,环绕圆锥侧面一周再回到M处,若使绳子最短,则它的长度应该是多少?(四)课堂小结本节课学习了柱体、锥体与台体的表面积的结构和求解方法及公式。用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。(五)课后作业:P28,习题1.3,A组1、2。(以上补充练习)教学反思: