柱体、锥体、台体的表面积与体积课时目标1.了解柱体、锥体、台体的表面积与体积的计算公式.2.会利用柱体、锥体、台体的表面积与体积公式解决一些简单的实际问题.知识梳理1.旋转体的表面积名称图形公式圆柱底面积:S底=________侧面积:S侧=________表面积:S=2πr(r+l)圆锥底面积:S底=________侧面积:S侧=________表面积:S=________圆台上底面面积:S上底=__________下底面面积:S下底=____________侧面积:S侧=__________表面积:S=________________2.体积公式(1)柱体:柱体的底面面积为S,高为h,则V=______.(2)锥体:锥体的底面面积为S,高为h,则V=______.(3)台体:台体的上、下底面面积分别为S′、S,高为h,则V=(S′++S)h.练习反馈1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A.8B.C.D.2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A.B.C.D.3.中心角为135°,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A∶B等于( )A.11∶8B.3∶8C.8∶3D.13∶84.已知直角三角形的两直角边长为a、b,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A.a∶bB.b∶aC.a2∶b2D.b2∶a2
5.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为( )A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确6.三视图如图所示的几何体的全面积是( )A.7+B.+C.7+D.7.一个长方体的长、宽、高分别为9,8,3,若在上面钻一个圆柱形孔后其表面积没有变化,则孔的半径为________.8.圆柱的侧面展开图是长12cm,宽8cm的矩形,则这个圆柱的体积为________________cm3.9.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________.10.圆台的上、下底面半径分别为10cm和20cm.它的侧面展开图扇环的圆心角为180°,那么圆台的表面积和体积分别是多少?(结果中保留π)11.已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.
12.一空间几何体的三视图如图所示,则该几何体的体积为( )A.2π+2B.4π+2C.2π+D.4π+13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).