2019-2020年高中数学必修二教案:1-3-1《柱体、椎体台体的表面积与体积》
加入VIP免费下载

2019-2020年高中数学必修二教案:1-3-1《柱体、椎体台体的表面积与体积》

ID:1218682

大小:70.3 KB

页数:3页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2019-2020年高中数学必修二教案:1-3-1《柱体、椎体台体的表面积与体积》学习目标1、通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与柱体和锥体之间的转换关系.培养学生空间想象能力和思维能力.2、让学生经历几何全的侧面展开过程,感知几何体的形状.让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系.3、通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响,从而增强学习的积极性.教学重难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导教学过程一、情境导入(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类.(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容.二、探究新知1、阅读教材23—25页内容,回答问题(柱、锥、台表面积)(1)在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?(2)棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?(3)如何根据圆柱、圆锥的几何结构特征,求它们的表面积?(4)联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为,你计算出它的表面积吗?结论:(1)正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.(2)棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.(3 )它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.我们知道,圆柱的侧面展开图是一个矩形.如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积S=2πr2+2πrl=2πr(r+l).圆锥的侧面展开图是一个扇形.如果圆锥的底面半径为r,母线长为l,那么它的表面积S=πr2+πrl=πr(r+l).(4)圆台的侧面展开图是一个扇环,它的表面积等于上、下两个底面的面积和加上侧面的面积,即.思考:圆柱、圆锥和圆台的表面积之间有什么关系?练习一:完成教材例1、例2,体会例1、2所蕴含的解题技巧;完成教材第27页练习1;把一个棱长为a的正方体,切成27个全等的小正方体,则所有小正方体的表面积是.2、阅读教材第25—27页内容,回答问题(柱、锥、台体积)(5)回顾长方体、正方体和圆柱的体积公式,你能将它们统一成一种形式吗,并依次类比出柱体的体积公式吗?椎体呢?(6)比较柱体、锥体、台体的体积公式:V柱体=Sh(S为底面积,h为柱体的高);V锥体=(S为底面积,h为锥体的高);V台体=h(S′,S分别为上、下底面积,h为台体的高).你能发现三者之间的关系吗?柱体、锥体是否可以看作“特殊”的台体?其体积公式是否可以看作台体体积公式的“特殊”形式?结论:(5)棱长为a的正方体的体积V=a3=a2a=Sh;长方体的长、宽和高分别为a,b,c,其体积为V=abc=(ab)c=Sh;底面半径为r高为h的圆柱的体积是V=πr2h=Sh,可以类比,一般的柱体的体积也是V=Sh,其中S是底面面积,h为柱体的高.圆锥的体积公式是V=(S为底面面积,h为高),它是同底等高的圆柱的体积的.棱锥的体积也是同底等高的棱柱体积的,即棱锥的体积V=(S为底面面积,h为高).由此可见,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是底面面积乘高的.由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差,得到圆台(棱台)的体积公式V=(S′++S)h,其中S′,S分别为上、下底面面积,h为圆台(棱台)高.注意:不要求推导公式,也不要求记忆.(6)柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.因此柱体、锥体可以看作“特殊”的台体.当S′=0时,台体的体积公式变为锥体的体积公式;当S′=S时,台体的体积公式变为柱体的体积公式,因此,柱体、锥体的体积公式可以看作台体体积公式的“特殊”形式.柱体和锥体可以看作由台体变化得到,柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体,因此很容易得出它们之间的体积关系,如图:练习二:完成教材26页例3,体会例3中蕴含的解题技巧;完成教材27页练习2;把长和宽分别为6和3的矩形卷成一个圆柱的侧面,求这个圆柱的体积;已知三棱锥O-ABC中,OA、OB、OC两两垂直,OC=1,OA=x,OB=y,且x+y=4 ,则三棱锥体积的最大值是_______;④已知正三棱台(上、下底面是正三角形,上底面的中心在下底面的投影是下底面的中心)的上下底面边长分别是2cm和4cm,侧棱长是cm,试求该三棱台的表面积与体积;④:一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为_______.(根据三视图,可知该几何体是三棱锥,图12所示为该三棱锥的直观图,并且侧棱PA⊥AB,PA⊥AC,AB⊥AC.结果:1/6)三、小结(1)柱体、锥体、台体的体积公式:如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积S=2πr2+2πrl=2πr(r+l);圆锥的侧面展开图是一个扇形.如果圆锥的底面半径为r,母线长为l,那么它的表面积S=πr2+πrl=πr(r+l);圆台的侧面展开图是一个扇环,它的表面积等于上、下两个底面的面积和加上侧面的面积,即..(2)柱体、锥体、台体的体积公式:V柱体=Sh(S为底面积,h为柱体的高);V锥体=(S为底面积,h为锥体的高);V台体=h(S′,S分别为上、下底面积,h为台体的高).四、布置作业教材第28页习题1.3A组第1、2、3题;

10000+的老师在这里下载备课资料