《1.3.2球的体积和表面积》教学设计教材:人民教育出版社A版普通高中课程标准实验教科书《数学必修2》一、教学目标知识目标:1、掌握球的体积公式、表面积公式.2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力.3、能解决与球的截面有关的计算问题及球的“内接”与“外切”的几何体问题.能力目标:通过类比、归纳、猜想等合情推理培养学生勇于探索的精神.提高学生分析、综合、抽象概括等逻辑推理能力情感目标:通过寻求如何研究球的内切与外接的方法,培养学生将数学知识和生活实际相联系的意识,对学生进行“事物具有多面性”的辩证唯物主义思想教育.二、教学重点、难点重点:球的体积和表面积的计算公式的应用.难点:解决与球相关的“内接”与“外切”的几何体问题三、教学方法采用试验探索,启发式的教学方法.教辅手段:圆柱、圆锥、半球容积比实物模型;一盆水;多媒体.四、教学过程教学环节教学内容师生互动设计意图复习引入1.球的概念:球面可以看作一个半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面所为成的几何体叫做球体,简称球.一个球用表示它的球心的字母表示,例如球.2.圆柱、圆锥、圆台的表面积公式分别是什么?柱体、锥体、台体的体积公式分别是什么?
(1).多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体积(V)棱柱棱柱直截面周长×lS侧+2S底S底·h=S直截面·h直棱柱chS底·h棱锥棱锥各侧面积之和S侧+S底S底·h正棱锥ch′棱台棱台各侧面面积之和S侧+S上底+S下底h(S上底+S下底+)正棱台(c+c′)h′表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。(2).旋转体的面积和体积公式名称圆柱圆锥圆台S侧2πrlπrlπ(r1+r2)lS全2πr(l+r)πr(l+r)π(r1+r2)l+π(r21+r22)Vπr2h(即πr2l)πr2hπh(r21+r1r2+r22)表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。3.正四面体:每个面都是正三角形的正三棱锥。教师提出问题,学生思考作答.方面唤起学生对球体的概念的认识,加深印象;另一方面,为本节做好必要的知识铺垫.教学环节教学内容师生互动设计意图
知识的形成问题提出:球也是一个旋转体,它也有表面积和体积,怎样求一个球的表面积和体积也就成为我们学习的内容.1.球的体积可先求半径为的半球的体积.为此,采用倒水做实验的方法,直观得出球的体积公式.取三个形状不同的容器,其中一个是半球形的,一个是圆柱形的,一个是圆锥形的,它们的高和底面圆的半径长都是.先在半球和圆锥容器里灌满水,然后倒入圆柱形容器里,我们可以发现,这些水恰好把圆柱形容器灌满.这个实验告诉我们,半球的体积等于与它等底、等高的圆柱与圆锥的体积的差,就是:所以,师生共同完成倒水实验,教师引导学生探索发现球的体积公式.从实验入手,激发学生的学习兴趣,让学生发现并体验数学中的美
2球的表面积:(以后讲)又∵,且∴可得,又∵,∴,∴即为球的表面积公式小结:球的体积公式、表面积公式都是以R为自变量的函数。教师讲解,学生感悟分割、近似、极限等思想渗透微积分思想.应用练习1:如果球的体积是36cm3,那么它的半径是.3练习2:若两个球的体积之比为8:27,那么两个球的表面积之比为(C)(A)8:27(B)2:3(C)4:9(D)2:9例1如图,圆柱的底面直径与高都等于球的直径,,求证:(1)球的体积等于圆柱体积的(2)球的表面积等于圆柱的侧面积.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.则有V球=,教师引导学生共同完成
举例V圆柱=πR2·2R=2πR3,所以V球=.(2)因为S球=4πR2,S圆柱侧=2πR·2R=4πR2,所以S球=S圆柱侧.变式1:把上一题的圆柱改为正方体,且正方体的棱长为a,球的半径为多少?变式2:若把球吹大到内切于正方体的棱,且正方体的棱长为a,此时球的半径又为多少?变式3:若球接着吹大到刚好包围整个正方体即球各个顶点都在球面上,且正方体的棱长为a,此时球的半径又为多少?图1图2图3让学生巩固加深所学内容并灵活运用.应用举例例2、如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4cm与2cm,如图所示,俯视图是一个边长为4cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.解【审题指导】根据本题所给条件中的三视图,判断该几何体的形状与几何体中相关的数量关系,根据这些求该几何体的全面积及其外接球的体积.【规范解答】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,………………………3分因此该几何体的全面积是:2×4×4+4×4×2=64(cm2),
即几何体的全面积是64cm2.………………………6分(2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线为d,球的半径是r,所以球的半径为r=3.…………………………………………………9分因此球的体积所以外接球的体积是36πcm3.………………………12分课堂练习1.一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为_______cm3.2.有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比_____________.学生思考、解答,老师巡视,个别指导,发现共性问题,及时让同学讨论.巩固所学知识,培养学生的分析和解决问题的能力以及基本的运算能力.思考题思考:若把正方体A、B、C1、D1连接起来成一个什么图形?这个图形的外接球半径等价于什么图形外接球的半径?为高三复习做准备课堂小结1.通过做实验的方法,获得了球的体积公式和表面积公式.2.掌握球的体积公式、表面积公式3.熟练掌握球的内切、外接问题学生小结,
解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.学生小结,教师完善.可以逐步提高学生自我获取知识的能力.教师完善,使知识更系统化.作业1、课本P29B12、《世纪金榜》P16例23、《世纪金榜》P17基础自主演练64、半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的边长为,求半球的表面积和体积。解:作轴截面如图所示,,,设球半径为,则∴,∴,.课下学生独立完成.
思考题:正三棱锥的高为1,底面边长为。求棱锥的全面积和它的内切球的表面积。
大班毕业典礼主持词筱:尊敬的各位领导、家长、亲爱的小朋友们:合:大家下午好!筱:今天我们在这里隆重召开大班毕业典礼,为可爱的孩子们三年的幼儿园生活画一个圆满的句号。娜:离别的钟声即将响起,作为老师我们内心有太多说不出的高兴与不舍。为了孩子们即将成为一名小学生而高兴,为了孩子们即将离开我们而依依不舍。婷:三年的集体生活,不仅使孩子们在各方面得到发展,更使孩子们与老师建立了纯真的感情。我们一起学习,一起游戏。合:作为老师,我们有这么多的小精灵陪伴,我们拥有,我们幸福!筱:三年来你们带给我多少的欢声笑语,娜:三年来你们给了我多少的感动和欣慰,婷:此刻你们将要离开这里,我只有默默的祝福你们——我的宝贝:合:愿你们是小鸟从这里起飞,愿你们是小船从这里扬帆,愿你们是骏马在这里奋蹄......娜:文苑幼儿园大班毕业典礼合:现在开始!婷:下面请欣赏家长代表带来的腰鼓《***》大家掌声欢迎。筱:感谢家长代表精彩的表演。下面请我们敬爱的×校长,致毕业典礼的贺词,大家掌声欢迎!1、校长讲话娜:感谢×校长热情洋溢的讲话。下面请我们的家长朋友,×××的妈妈代表家长们上台讲话,大家掌声欢迎。2、家长代表讲话婷:感谢×××妈妈感人的讲话!经典诵读,是我园的一大教育特色之一。下面请欣赏大班级部带来的《毕业诗》和古诗词朗诵:筱:我们的孩子朗诵的好不好?再一次把热烈的掌声送给我们这群聪明、可爱的宝贝们。下面请欣赏大班级部带来的舞蹈《我有一双小小手》,大家掌声欢迎。娜:到了说再见的时刻,这是依依不舍的时刻,也是开心高兴的时刻。婷:亲爱的孩子们,老师将记住你们的天真、善良和爱心。筱:今后,你们无论遇到了什么困难,也请记住老师对你们的爱,在老师心中,你们都是独一无二的!你们都是最棒的!娜:亲爱的孩子们,老师爱你们,永远爱你们。筱:老师为你们祝福,祝愿你们象一只只快乐的小鸟,在广阔的天空自由自在的飞翔;婷:祝愿你们好好学习,实现自己心中的梦想:成为快乐能干的机器猫、机灵勇敢的喜洋洋、聪明美丽的白雪公主!合:再见了,我亲爱的宝贝!幼儿园是你们永远的家,老师是你们永远的守巢人!请欣赏《毕业歌》筱:下面请领导上台给我的小朋友
们颁发毕业证书,大家掌声欢迎。幼儿园的世界是你们实现蔚蓝色梦想的摇篮,我愿是轻抚摇篮的双手,我愿是流淌在你们心间的甜美童谣,陪伴你们在这梦开始的地方快乐成长!喜欢你们甜甜的,稚嫩的叫我老师,喜欢你们每天沐浴阳光,笑如花,感谢你们传递给我的幸福感!祝福你们,亲爱的孩子们,愿您们健康茁壮的成长!
身高:90cm体重:16公斤希望你成为一个聪明活泼、充满爱心,独立自强的人。学习不是为了父母,也不是为了老师,而是为了你自己。要学会勇敢、自信,跌倒并不可怕,可怕的是跌倒不爬起来。最后,愿你自强不息!永往直前!——恩茜的爸爸、妈妈