高中数学人教A版必修2 第一章 空间几何体 1.3.2 球的体积和表面积 教案
加入VIP免费下载

高中数学人教A版必修2 第一章 空间几何体 1.3.2 球的体积和表面积 教案

ID:1219026

大小:628.56 KB

页数:4页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.3.2球的体积和表面积教学目的:1.熟记球的体积公式和表面积公式;2.会用球的体积公式和表面积公式解决有关问题教学重点:球的体积公式和表面积公式及其应用教学难点:球的体积公式和表面积公式及其应用教学过程:一、复习引入:1球的概念:与定点距离等于或小于定长的点的集合,叫做球体,简称球定点叫球心,定长叫球的半径与定点距离等于定长的点的集合叫做球面一个球或球面用表示它的球心的字母表示,例如球.2.球的截面:用一平面去截一个球,设是平面的垂线段,为垂足,且,所得的截面是以球心在截面内的射影为圆心,以为半径的一个圆,截面是一个圆面球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆+4.两点的球面距离:球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离5半球的底面:已知半径为的球,用过球心的平面去截球,球被截面分成大小相等的两个半球,截面圆(包含它内部的点),叫做所得半球的底面二、讲解新课:1.球的体积公式:2球的表面积:设球的半径为,我们把球面任意分割为一些“小球面片”,它们的面积分别用表示,则球的表面积:以这些“小球面片”为底,球心为顶点的“小锥体”的体积和等于求的体积,这些“小锥体”可近似地看成棱锥,“小锥体”的底面积可近似地等于“ 小锥体”的底面积,球的半径近似地等于小棱锥的高,因此,第个小棱锥的体积,当“小锥体”的底面非常小时,“小锥体”的底面几乎是“平的”,于是球的体积:,又∵,且∴可得,又∵,∴,∴即为球的表面积公式三、讲解范例:例1已知过球面上三点的截面和球心的距离为球半径的一半,且,求球的表面积解:设截面圆心为,连结,设球半径为,则,在中,,∴,∴,∴.例2.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为,求球的表面积和体积解:作轴截面如图所示,,,设球半径为, 则∴,∴,.例3.表面积为的球,其内接正四棱柱的高是,求这个正四棱柱的表面积解:设球半径为,正四棱柱底面边长为,则作轴截面如图,,,又∵,∴,∴,∴,∴.四、课堂练习:1球的大圆面积增大为原来的倍,则体积增大为原来的倍;2.三个球的半径之比为,那么最大的球的体积是其余两个球的体积和的倍;3.若球的大圆面积扩大为原来的倍,则球的体积比原来增加倍;4.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是;5.正方体全面积是,它的外接球的体积是,内切球的体积是.答案:1.82.33.74.65.,6球O1、O2、分别与正方体的各面、各条棱相切,正方体的各顶点都在球O3的表面上,求三个球的表面积之比.分析:球的表面积之比事实上就是半径之比的平方,故只需找到球半径之间的关系即可.解:设正方体棱长为a,则三个球的半径依次为、,∴三个球的表面积之比是.五、小结:球的表面积公式的推导及应用;球的内接正方体、长方体及外切正方体的有关计算“分割求近似和化为准确和”的方法,是一种重要的 数学思想方法——极限思想,它是今后要学习的微积分部分“定积分”内容的一个应用;球的体积公式和表面积公式要熟练掌握.六、课后作业:

10000+的老师在这里下载备课资料