课题:球的体积和表面积教学目标:1.熟记球的体积公式和表面积公式;2.会用球的体积公式和表面积公式解决有关问题教学重点:球的体积公式和表面积公式及其应用教学难点:球的体积公式和表面积公式及其应用教学过程:一、创设情景,引入新课:提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。设疑引课:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。二、探究新知:1.探究球的体积公式回顾祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截面的面积都相等,那么这两个几何体的体积一定相等。构造新的几何体,结合祖暅原理推导球的体积公式(见P32页)球的体积公式:2.探究球的表面积公式:设球的半径为,我们把球面任意分割为一些“小球面片”,它们的面积分别用表示,则球的表面积:以这些“小球面片”为底,球心为顶点的“小锥体”的体积和等于球的体积,这些“小锥体”可近似地看成棱锥,“小锥体”的底面积可近似地等于“小棱锥”的底面积,球的半径近似地等于小棱锥的高,因此,第个小棱锥的体积,当“小锥体”的底面非常小时,“小锥体”的底面几乎是“平的”,于是球的体积:,又∵,且∴可得,
又∵,∴,∴即为球的表面积公式三、例题示范,巩固新知:例1已知过球面上三点的截面和球心的距离为球半径的一半,且,求球的表面积解:设截面圆心为,连结,设球半径为,则,在中,,∴,∴,∴.例2.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为,求球的表面积和体积解:作轴截面如图所示,,,设球半径为,则∴,∴,.例3.表面积为的球,其内接正四棱柱的高是,求这个正四棱柱的表面积解:设球半径为,正四棱柱底面边长为,则作轴截面如图,,,又∵,∴,∴,∴,∴.
例4.如图,圆柱的底面直径与高都等于球的直径.求证:(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积。证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.因为所以,(2)因为,,所以,.四、练习反馈,理解加深:补充练习:1.三个球的半径之比为,那么最大的球的体积是其余两个球的体积和的倍;2.若球的大圆面积扩大为原来的倍,则球的体积比原来增加倍;3.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是;4.正方体全面积是,它的外接球的体积是,内切球的体积是.答案:1.32.73.64.,5球O1、O2、分别与正方体的各面、各条棱相切,正方体的各顶点都在球O3的表面上,求三个球的表面积之比.分析:球的表面积之比事实上就是半径之比的平方,故只需找到球半径之间的关系即可.解:设正方体棱长为a,则三个球的半径依次为、,∴三个球的表面积之比是.五、小结归纳:球的表面积公式的推导及应用;球的内接正方体、长方体及外切正方体的有关计算“分割求近似和化为准确和”的方法,是一种重要的数学思想方法——极限思想,它是今后要学习的微积分部分“定积分”内容的一个应用;球的体积公式和表面积公式要熟练掌握.六、作业布置:w.w.w.k.s.5.u.c.o.mwww.ks5u.com