授课日期授课班级课 题柱体、锥体、台体的表面积与体积课 型新授课三维目标知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。情感、态度与价值观通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。教学重点柱体、锥体、台体的表面积和体积计算教学难点台体体积公式的推导教学方法引导探究教 具教学过程:一、问题导学:(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。二、讨论讲解:(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:r1为上底半径r为下底半径l为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。(s’,s分别我上下底面面积,h为台柱高)4、例题分析讲解(课本)例1、例2、例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为a㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。(答案:)2、棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。(答案:2325cm3)6、课堂小结