1.3.2球的体积和表面积一、学习目标:知识与技能:⑴通过对球的体积公式的推导,了解推导过程中所用的基本数学思想方法,知道祖暅原理。⑵能运用球的公式灵活解决实际问题。培养空间想象能力。过程与方法:通过球的体积公式的推导,从而得到一种推导球体积公式的方法,情感与价值观:通过学习,使我们对球的表面积、体积公式的推导方法有了一定的了解,提高空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。二、学习重难点:学习重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。学习难点:推导体积和面积公式中空间想象能力的形成。三、使用说明及学法指导:1、限定45分钟完成,认真阅读教材内容,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、小班完成A,B,C全部内容;实验班完成B级以上;平行班完成A~B.(其中A、B级问题自主完成;C级问题可由合作探究方式完成)四、知识链接:什么是球?球的半径?球的直观图怎样画?球的半径,截面圆的半径,球心与截面圆心的距离间有何关系?五、学习过程:B问题1:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?(阅读32页了解球的体积的推导即可,球的表面积的推导不要求了解)
B问题2:球的表面积的公式怎样?球的体积怎样?A例1:圆柱的底面直径与高都等于球的直径。求证:(1)球的体积等于圆柱的体积的;(2)球的表面积等于圆柱的侧面积;
A例2:已知:钢球直径是5cm,求它的体积.B(变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)六、达标训练一、选择题A1一个正方体的顶点都在球面上,此球与正方体的表面积之比是()A.B.C.D.B2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是()ABCDB3正方体的全面积为,它的顶点都在球面上,则这个球的表面积是:()A.;B.;C.;D..
B4已知正方体外接球的体积是,那么正方体的棱长等于()(A) (B) (C) (D)二、填空题A5、球的直径伸长为原来的2倍,体积变为原来的倍.B6、一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为cm3.B7、长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。B8、有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比_________.B9、正方体的内切球和外接球的体积的比为,表面积比为。B10、一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米则此球的半径为_________厘米三、解答题B11、在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm2和400πcm2,求球的表面积。七、小结与反思【心灵鸡汤】行动和不满足是进步的第一必需品!