(江苏版)2022年中考数学模拟练习卷13(含答案)
加入VIP免费下载

(江苏版)2022年中考数学模拟练习卷13(含答案)

ID:1219366

大小:505 KB

页数:23页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
中考数学模拟练习卷一、选择题(本题共10小题,每小题3分,共30分)1.﹣8的相反数是(  )A.8B.﹣8C.D.﹣2.下列数中不属于有理数的是(  )A.1B.C.D.0.1133.若等腰三角形的顶角为80°,则它的一个底角度数为(  )A.20°B.50°C.80°D.100°4.下列运算正确的是(  )A.x﹣2x=xB.(xy)2=xy2C.×=D.(﹣)2=45.已知实数a、b,若a>b,则下列结论正确的是(  )A.a﹣5<b﹣5B.2+a<2+bC.﹣>﹣D.3a>3b6.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是(  )A.平均数是91B.极差是20C.中位数是91D.众数是987.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是(  )A.43°B.47°C.30°D.60°8.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=(  ) A.B.2C.D.9.如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是(  )A.m=nB.x=m+nC.x>m+nD.x2=m2+n210.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为(  )A.2B.C.D. 二、填空题(本题共8小题,每2分,共16分)11.(2分)函数y=中自变量x的取值范围是  .12.(2分)因式分解:a3﹣4a=  .13.(2分)反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=  .14.(2分)某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105000张宣传彩页.105000这个数字用科学记数法表示为  .15.(2分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为  . 16.(2分)如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,连接AE,将△ABE沿AE折叠,点B落在点B′处,则sin∠B′EC的值为  .17.(2分)如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P的动直线DE交OA于D,交OB于E,那么=  .18.(2分)如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为  . 三、解答题(本题共10小题,共84分)19.(8分)计算或化简:(1)+()﹣1﹣4cos45°+(﹣π)0.(2)(x﹣2)2﹣x(x﹣3).20.(8分)(1)解方程:﹣=﹣3.(2)解不等式组: 21.(8分)如图:在菱形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是正方形.22.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了  名学生,图2中等级为A的扇形的圆心角等于  °;(2)补全条形统计图;(3)若该校共有3000名学生,请你估计该校等级为D的学生有多少名?23.(6分)抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m和常数项n的值.(1)一共可以得到  个不同形式的二次函数;(直接写出结果)(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.24.(8分)在边长为1的正方形网格图中,点B的坐标为(2,0),点A的坐标为(0,﹣3). (1)在图1中,将线段AB关于原点作位似变换,使得变换后的线段DE与线段AB的相似比是1:2(其中A与D是对应点),请建立合适的坐标系,仅使用无刻度的直尺作出变换后的线段DE,并求直线DE的函数表达式;(2)在图2中,仅使用无刻度的直尺,作出以AB为边的矩形ABFG,使其面积为11.(保留作图痕迹,不写作法)25.(8分)市区某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.若不计队伍的长度,联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间存在着某种函数关系.(1)求后队追到前队所用的时间的值;(2)联络员从出发到他折返后第一次与后队相遇的过程中,求此函数关系表达式,并在直角坐标系中画出此函数的图象;(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?26.(10分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥ AB于点E,点D为x轴上动点,连结CD,DE,以CD,DE为边作▱CDEF.设运动时间为t秒.(1)求点C运动了多少秒时,点E恰好是AB的中点?(2)当t=4时,若▱CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;(3)点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,请直接求出满足条件的t的取值范围.[来源:Z.Com]27.(10分)如图:已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,对称轴为直线L设P为对称轴l上的点,连接PA、PC,PA=PC.(1)∠ABC的度数为  °;(2)求点P坐标(用含m的代数式表示);(3)在x轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小,如果存在,求满足条件的Q的坐标及对应的二次函数解析式,并求出PQ的最小值;如果不存在,请说明理由.28.(10分)如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=6,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE. (1)点P在运动过程中,∠CPB=  °;(2)当m=2时,试求矩形CEGF的面积;(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;(4)如果点P在射线AB上运动,当△PDE的面积为3时,请你求出CD的长度. 参考答案与试题解析 一、选择题(本题共10小题,每小题3分,共30分)1.【解答】解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选:A.2.【解答】解:A、1是整数,属于有理数;B、是分数,属于有理数;C、既不是分数、也不是整数,不属于有理数;D、0.113是有限小数,即分数,属于有理数;故选:C. 3.【解答】解:∵等腰三角形的顶角为80°,[来源:Z.Com]∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.4.【解答】解:A、x﹣2x=﹣x,此选项错误;B、(xy)2=x2y2,此选项错误;C、×=,此选项正确;D、(﹣)2=2,此选项错误;故选:C.5.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.6.【解答】解:根据定义可得,极差是20,众数是98,中位数是91,平均数是90.故A错误.故选:A.7.【解答】解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B. 8.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.9.【解答】解:∵tanB=tanC=tan∠MAN=1,∴∠B=∠C=∠MAN=45°,∵∠CAB=90°,∴AC=AB,将△BAM绕点A顺时针旋转90°至△ACN′,点B与点C重合,点M落在N′处,连接NN′,则有AN′=AM,CN′=BM,∠1=∠3,∵∠MCN=45°,∴∠1+∠2=45°,∴∠2+∠3=45°,∴∠NAN′=∠MAN.在△MAN与△NAN′中,,∴△MAN≌△NCN′(SAS),∴MN=NN′.由旋转性质可知,∠ACN′=∠B=45°,∴∠NCN′=∠ACN′+∠ACB=90°,∴NN'2=NC2+N'C2,即x2=n2+m2,故选:D. 10.【解答】解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.故选:D.  二、填空题(本题共8小题,每2分,共16分)11.【解答】解:根据题意得3x﹣2≥0,解得:x≥.故答案是:x≥.12.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).13.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.14.【解答】解:105000=1.05×105.故答案为:1.05×105.15.【解答】解:由图可知,OA=OB=,而AB=4,∴OA2+OB2=AB2,∴∠O=90°,OB==2;则弧AB的长为==π,设底面半径为r,则2πr=π,r=(cm).这个圆锥的底面半径为cm.故答案为:cm16.【解答】解:如图所示,过B'作BC的垂线,交BC于F,交AD于G,则∠AGB'=∠B'FE=90 °,由折叠可得,∠AB'E=∠B=90°,∴∠GAB'=∠FB'E,∴△AGB'∽△B'FE,∴=,由折叠可得AB'=AB=4,∵BC=6,点E为BC的中点,∴B'E=BE=3,设B'F=x,则B'G=4﹣x,∴=,即EF=(4﹣x)=3﹣x,∵Rt△EFB'中,EF2+B'F2=B'E2,∴(3﹣x)2+x2=32,解得x=,∴Rt△B'EF中,sin∠B′EC===.故答案为:.17.【解答】解:过点P作PM⊥OD于M,PN⊥OE于N,作EH⊥OD于H,在Rt△EOH中,EH=OE×sin∠AOB=OE,∴S△DOE=×OD×EH=•OD•OE,∵OC是∠AOB的平分线,OP=4,∠AOB=60°,∴∠MOP=∠NOP=30°,PM=PN=OP=2,∴S△DOE=S△DOP+S△POE=×OD•PM+×OE•PN=OD+OE, ∴•OD•OE=OD+OE,∴=,故答案为:.18.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π. 三、解答题(本题共10小题,共84分)19.【解答】解:(1)原式=2+2﹣4×+1=2+2﹣2+1 =3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.20.【解答】解:(1)去分母得:1﹣x+1=﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解;(2),由①得:x>﹣1,由②得:x≤2,则不等式组的解集为﹣1<x≤2.21.【解答】证明:(1)∵BE=CF,∴BF=CE,又∵AF=DE,AB=DC,∴△ABF≌△DCE.(2)由△ABF≌△DCE得∠B=∠C,由AB∥CD得∠B+∠C=180°,得∠B=∠C=90°,四边形ABCD是正方形.22.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),∵a=×100%=24%;∴扇形统计图中A级对应的圆心角为24%×360°=86.4°;故答案为:50、86.4;(2)C等级人数为50﹣(12+24+4)=10,补全条形图如下: (3)3000×=240(人),答:估计该校等级为D的学生有240名.23.【解答】解:(1)根据题意知,m的值有4个,n的值有4个,所以可以得到4×4=16个不同形式的二次函数.故答案为16;(2)∵y=x2+mx+n,∴△=m2﹣4n.∵二次函数图象顶点在x轴上方,∴△=m2﹣4n<0,通过计算可知,m=1,n=1,2,3,4;或m=2,n=2,3,4;或m=3,n=3,4时满足△=m2﹣4n<0,由此可知,抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是.24.【解答】解:(1)如图所示,连接CE,交y轴于D,则DE即为所求,由E(1,0),D(0,﹣1.5),可得DE的解析式为y=x﹣, 连接C'E',交y轴于D',则D'E'即为所求,由E'(﹣1,0),D'(0,1.5),可得D'E'的解析式为y=x+,∴直线DE的函数表达式为y=x﹣或y=x+;(2)如图所示,连接AD,EH,交于点G,由DE:AH=2:11,可得DG:AG=2:11,∴AG=AD=,同理可得,BF=,此时,矩形ABFG的面积为×=11.故矩形ABFG即为所求.25.【解答】解:(1)设线段AB对应的函数关系式为y1=kx+b.根据题意,得, 解得.∴y1=﹣2x+4,当y=0时,﹣2x+4=0,解得x=2,故后队追到前队所用的时间的值是2h;(2)根据题意,得线段DE对应的函数关系式为y2=(12+4)(x﹣)=16x﹣8.如图所示:(3)根据题意,得线段AD对应的函数关系式为y3=k3x+b3,由题意,得,解得:.∴y3=﹣8x+4.分两种情况:①y1=2y3,即﹣2x+4=2(﹣8x+4),解得x=.②y1=2y2,即﹣2x+4=2(16x﹣8),解得x=.综上,联络员从出发到他折返后第一次与后队相遇的过程中,当x为或时,他离前队的路程与他离后队的路程相等.26.【解答】解:(1)根据题意知BC=2t、BO=16、OA=12,则OC=16﹣2t,∵CE⊥AB且E为AB中点,∴CB=CA=2t, 在Rt△AOC中,由OC2+OA2=AC2可得(16﹣2t)2+122=(2t)2,解得:t=6.25,即点C运动了6.25秒时,点E恰好是AB的中点;(2)如图1中,当t=4时,BC=OC=8,∵A(12,0),B(0,16),∴直线AB的解析式为y=﹣x+16,∵CE⊥AB,C(0,8),∴直线CE的解析式为y=x+8,,解得,∴E(,),∵点F在y轴上,∴DE∥y轴,∴D(,0).(3)如图2中, ①当点C在y轴的正半轴上时,设以EC为直径的⊙P与x轴相切于点D,作ER⊥OA与R.根据PD=(OC+ER),可得:t=[16﹣2t+(20﹣t)×],解得t=.②当点C′在y轴的负半轴上时,设以E′C′为直径的⊙P′与x轴相切于点D′,作ER′⊥OA与K.根据P′D′=(OC′+E′K),可得:t=[2t﹣16+(t﹣20)×],解得t=,综上所述,点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,满足条件的t的取值范围为<t<.27.【解答】解:(1)令x=0,则y=﹣m,C点坐标为:(0,﹣m),令y=0,则x2+(1﹣m)x﹣m=0,解得:x1=﹣1,x2=m,∵0<m<1,点A在点B的左侧,∴B点坐标为:(m,0),∴OB=OC=m,∵∠BOC=90°,∴△BOC是等腰直角三角形,∠ABC=45°; 故答案为:45°;(2)如图1,作PD⊥y轴,垂足为D,设l与x轴交于点E,由题意得,抛物线的对称轴为:x=,设点P坐标为:(,n),∵PA=PC,∴PA2=PC2,即AE2+PE2=CD2+PD2,∴(+1)2+n2=(n+m)2+()2,解得:n=,∴P点的坐标为:(,);(3)存在点Q满足题意,∵P点的坐标为:(,),∴PA2+PC2=AE2+PE2+CD2+PD2,=(+1)2+()2+(+m)2+()2=1+m2,∵AC2=1+m2,∴PA2+PC2=AC2,∴∠APC=90°,∴△PAC是等腰直角三角形,∵以Q、B、C为顶点的三角形与△PAC相似,∴△QBC是等腰直角三角形,∴由题意可得满足条件的点Q的坐标为:(﹣m,0)若PQ与x轴垂直,则=﹣m,解得:m=,PQ=,若PQ与x轴不垂直, 则PQ2=PE2+EQ2=()2+(+m)2=m2﹣2m+=(m﹣)2+,∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵,∴当m=,即Q点的坐标为:(﹣,0)时,PQ的长度最小.28.【解答】解:(1)∵过点P的直线PQ的解析式为y=x+m,∴图象与x轴交点坐标的为:(﹣m,0),图象与y轴交点坐标的为:(0,m),∴QO=PO,∠POQ=90°,∴∠CPB=45°,故答案为:45°;(2)作OM⊥CD于M点,则CM=MD,∵∠CPB=45°,CE⊥AB,∴∠OQP=∠HCP=45°,PH=CH,由题意得:QO=2,∴OP=OQ=2,∴PM=MQ=OM=,连接OC,则CM==,∴PC=+, PH=CH=PC=,∴CE=2CH=+2,OH=PH﹣OP=﹣2=,∴S矩形CEGH=CE×OH=(+2)×=5;(3)不变,当P点在线段OA上时,由(2)得:PC2+PD2=(CM+PM)2+(DM﹣PM)2,=(CM+OM)2+(CM﹣OM)2,=2(CM2+OM2),=2OC2,=2×32,=18,当P点在线段OB上时,同理可得:PC2+PD2=18,当P点与点O重合时,显然有:PC2+PD2=18;(4)①当点P在直径AB上时如图所示,由圆的对称性可知,∠CPE=2∠CPB=90°,PE=PC,∴S△PDE=PD×PE=PD×PC=3,∴PD×PC=6,即(CM﹣PM)(CM+PM)=6,(CM﹣OM)(CM+OM)=6,∴CM2﹣OM2=6,∴CM2﹣(32﹣CM2)=6,∴CM2=,∴CD=2CM=;②当点P在线段AB的延长线上时,如图,同理有:PD×PC=6,即:(PM+DM)(PM﹣CM)=6, (OM+CM)(OM﹣CM)=6,∴OM2﹣CM2=6,∴(32﹣CM2)﹣CM2=6,∴CM2=,∴CD=2CM=,综上所述:CD为或.

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料