(江苏版)2022年中考数学模拟练习卷07(含答案)
加入VIP免费下载

(江苏版)2022年中考数学模拟练习卷07(含答案)

ID:1219381

大小:390 KB

页数:23页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
中考数学模拟练习卷一.选择题(共6小题,满分18分,每小题3分)1.﹣3的倒数是(  )A.3B.C.﹣D.﹣32.下列运算正确的是(  )A.x﹣2x=xB.(xy)2=xy2C.×=D.(﹣)2=43.下列图形中是中心对称图形的是(  )A.B.C.D.4.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为(  )A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣45.某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )劳动时间(小时)33.544.5人  数1132A.中位数是4,众数是4B.中位数是3.5,众数是4C.平均数是3.5,众数是4D.平均数是4,众数是3.56.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  ) A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)7.函数y=中自变量x的取值范围是  .8.分解因式:x3y﹣2x2y+xy=  .9.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有  个.10.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是  .11.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=  cm.12.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=  .13.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是  . 14.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为  .15.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为  .16.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.则CG=  .三.解答题(共10小题,满分102分)17.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.18.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元,(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整? 19.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.20.如图所示,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1小时)21.某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为  人,a=  ,b=  .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少? 22.有5张正面分别标有数字﹣2,﹣1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a.(1)求a=0的概率;(2)求既使关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限,又使关于x的方程有整数解的概率;(3)若再从剩下的四张中任取一张,将卡片上的数字记为b,求使一元二次方程x2+2ax+b2=0的两根均为正数的概率.23.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.24.如图,在平面直角坐标系中A点的坐标为(8,m),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)求四边形OCDB的面积. 25.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.26.如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标  ;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值. 参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据合并同类项法则、积的乘方、二次根式的乘法和性质逐一判断即可得.【解答】解:A、x﹣2x=﹣x,此选项错误;B、(xy)2=x2y2,此选项错误;C、×=,此选项正确;D、(﹣)2=2,此选项错误;故选:C.【点评】本题主要考查整式和二次根式的运算,解题的关键是掌握合并同类项法则、积的乘方、二次根式的乘法和性质.3.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、是中心对称图形,还是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.【点评】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C和D不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小, ∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项B正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二.填空题(共10小题,满分30分,每小题3分)7.【分析】根据二次根式有意义的条件:被开方数是非负数即可列不等式求解.【解答】解:根据题意得3x﹣2≥0,解得:x≥.故答案是:x≥.【点评】本题考查了求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.10.【分析】首先过点C作CH∥DE交AB于H,即可得CH∥DE∥FG,然后利用两直线平行,同位角相等与余角的性质,即可求得∠β的度数.【解答】解:如图,根据题意得:∠ACB=90°,DE∥FG,过点C作CH∥DE交AB于H,∴CH∥DE∥FG,∴∠BCH=∠α=43°,∴∠HCA=90°﹣∠BCH=47°,∴∠β=∠HCA=47°.故答案为:47°.【点评】此题考查了平行线的性质.此题难度不大,解题的关键是准确作出辅助线,掌握两直线平行,同位角相等定理的应用.11.【分析】首先根据在直角三角形中,斜边上的中线等于斜边的一半可得AB=2CD=6cm,再根据中位线的性质可得EF=AB=3cm. 【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD,∵CD=3cm,∴AB=6cm,∵E、F分别是BC、CA的中点,∴EF=AB=3cm,故答案为:3.【点评】此题主要考查了三角形中位线的性质以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.12.【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题;【解答】解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.13.【分析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【解答】解:∵点P(m﹣3,1﹣2m)在第三象限,∴,解得:0.5<m<3, 故答案为:0.5<m<3【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案是:12.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.15.【分析】根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.【解答】解:∵四边形ABCD是矩形,点A的坐标为(2,1),∴点D的横坐标为2,点B的纵坐标为1, 当x=2时,y==3,当y=1时,x=6,则AD=3﹣1=2,AB=6﹣2=4,则矩形ABCD的周长=2×(2+4)=12,故答案为:12.【点评】本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.16.【分析】根据旋转性质可知∠ADB=45°,再根据平移性质可知FD∥AB,从而得到∠FDB=45°.根据△ADE∽△ACB求出AE长,则可得到CG长度.【解答】解:根据旋转的性质可知∠ADB=∠ABD=45°,根据平移的性质可知AB∥FD,∴∠FDB=∠ABD=45°.∴∠ADE=45°+45°=90°.所以∠ADE=∠ACB.又∵∠EAB+∠EAD=90°,∠EAB+∠BAC=90°,∴∠EAD=∠BAC.∴△ADE∽△ACB.∴,即,解得AE=12.5.由平移性质可知CG=AE=12.5.故答案为12.5.【点评】本题主要考查了旋转性质和平移性质,以及相似三角形的判定和性质,注意图形之间的变换,利用不同变换的性质是解题的关键.三.解答题(共10小题,满分102分)17.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2, 整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.【分析】(1)设调价百分率为x,根据售价从原来每件40元经两次调价后调至每件32.4元,可列方程求解.(2)根据的条件从而求出多售的件数,从而得到两次调价后,每月可销售该商品数量.【解答】解:(1)设这种商品平均降价率是x,依题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%;(2)设降价y元,根据题意得(40﹣20﹣y)(500+50y)=10000解得:y=0(舍去)或y=10,答:在现价的基础上,再降低10元.【点评】考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.【分析】(1)首先依据平行线的性质证明∠B=∠DAE,∠C=∠CAE,然后结合角平分线的定义可证明∠B=∠C,故此可证明△ABC为等腰三角形;(2)首先证明△AEF≌△CFG,从而得到CG的长,然后可求得BC的长,于是可求得△ABC的周长.【解答】证明:(1)∵AE∥BC,∴∠B=∠DAE,∠C=∠CAE.∵AE平分∠DAC,∴∠DAE=∠CAE.∴∠B=∠C. ∴AB=AC.∴△ABC是等腰三角形.(2)∵F是AC的中点,∴AF=CF.∵AE∥BC,∴∠C=∠CAE.由对顶角相等可知:∠AFE=∠GFC.在△AFE和△CFG中,∴△AFE≌△CFG.∴AE=GC=8.∵GC=2BG,∴BG=4.∴BC=12.∴△ABC的周长=AB+AC+BC=10+10+12=32.【点评】本题主要考查的是等腰三角形的性质和判定,熟练掌握等腰三角形的性质和判定定理是解题的关键.20.【分析】延长AB交南北轴于点D,则AB⊥CD于点D,根据直角三角形的性质和三角函数解答即可.【解答】解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里 即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值、等腰直角三角形的判定和性质等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.21.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人. 【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.22.【分析】(1)根据概率公式即可得到结论;(2)首先使得关于x的分式方程整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的数,然后直接利用概率公式求解即可求得答案;(3)画出树状图,代入概率公式计算即可.【解答】解:(1)a=0的概率=;(2)解:∵关于x的分式方程有整数解,∴3﹣ax+3(x﹣3)=﹣x,解得:x=,∵x≠3,∴a≠2,∴当a=﹣2,1时,分式方程有整数解;∵关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限,∴a+1>0,a﹣4≤0,∴﹣1<a≤4,∴当a=0,1,2,时,关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限;综上,当a=1时,使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限;∴使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是:;(3)∵一元二次方程x2+2ax+b2=0的两根均为正数,∴x1+x2=﹣2a>0,x1x2=b2>0,△=4a2﹣4b2=4(a+b)(a﹣b)≥0∴a<0,b≠0,且|a|≥|b|列树状图如图所示,∵共有20种等可能结果,其中使一元二次方程x2+2ax+b2=0的两根均为正数的有4种情况.∴P=. 【点评】此题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的数是关键.23.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×= 【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.24.【分析】(1)根据A横坐标确定出OB的长,利用锐角三角函数定义及勾股定理求出AB的长,确定出C坐标,代入反比例解析式求出k的值即可;(2)四边形OCDB的面积等于三角形AOB面积减去三角形ACD面积,求出即可.【解答】解:(1)∵A点的坐标为(8,y),AB⊥x轴,∴OB=8,∵Rt△OBA中,sin∠OAB=,∴OA=8×=10,AB==6,∵C是OA的中点,且在第一象限,∴C(4,3),∴反比例函数的解析式为y=;(2)连接BC,∵D在双曲线y=上,且D点横坐标为8,∴D(8,),即BD=,又∵C(4,3),∴S四边形OCDB=S△BOC+S△BDC=×8×3+××4=15.【点评】此题考查了待定系数法求反比例解析式,以及反比例的性质,熟练掌握待定系数法是解本题的关键.25.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD 解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3), 设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.【分析】(1)根据ASA证明△ABC≌△OAD即可解决问题;(2)由△FOD≌△FOC(SAS),推出∠FCO=∠FDC,由△ABC≌△OAD,推出∠ACB=∠ADO,可得∠FCO=∠ACB;(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=KC=m,则CK=m.构建方程求出m的值即可解决问题;【解答】解:(1)∵AD⊥BC,∴∠AEB=90°=∠BAC=∠AOD,∴∠ABC+∠BAE=90°,∠BAE+∠OAD=90°,∴∠ABC=∠OAD,∴∠ABC=∠OAD,∵AB=OA,∴△ABC≌△OAD(ASA),∴OD=AC=2t,∴D(0,2t).故答案为(0,2t)(2)如图1中, ∵AB=AO,∠BAO=90°,OB=8,∴AB=AO=8,∵t=2,∴AC=OD=4,∴OC=OD=4,∵OF=OF,∠FOD=∠FOC,∴△FOD≌△FOC(SAS),∴∠FCO=∠FDC,∵△ABC≌△OAD,∴∠ACB=∠ADO,∴∠FCO=∠ACB.(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=m.∵CB平分∠ABO,∴∠ABC=22.5°,∵∠AKC=45°=∠ABC+∠KCB,∴∠KBC=∠KCB=22.5°,∴KB=KC=m, ∴m+m=8,∴m=8(﹣1),∴t==4(﹣1).【点评】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料