中考数学模拟练习卷一.选择题(共6小题,满分18分)1.下列说法正确的是( )A.等于﹣B.﹣没有立方根C.立方根等于本身的数是0D.﹣8的立方根是±22.下列运算正确的是( )A.2a+3a=5a2B.=﹣5C.a3•a4=a12D.(π﹣3)0=13.如图图形中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.4.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A.B.C.D.5.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是( )A.平均数为30B.众数为29C.中位数为31D.极差为56.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB于点E,以B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为( )
A.15πB.18C.15π﹣18D.12﹣5π 二.填空题(共10小题,满分30分,每小题3分)7.比较大小:﹣2 ﹣3.(用符号“>,=,<”填空)8.209506精确到千位的近似值是 .9.若==,则分式= .10.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为 .(填序号)11.转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是 .12.若正多边形的一个外角是40°,则这个正多边形的边数是 .13.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= .14.关于x的一元二次方程x2+2x+
k=0有两个不相等的实数根,则k的取值范围是 .15.把无理数,,,表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是 .[来源:学。科。网Z。X。X。K]16.如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是 .(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CP•CQ为定值. 三.解答题(共10小题,满分102分)17.(12分)(1)计算:(2)解方程:.18.(8分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A(绿博园),B(人民公园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生?(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.
19.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.21.(10分)如图,函数y1=k1x+b的图象与函数y2=(x>0)的图象交于A、B两点,已知A(1,m),B(2,1)(1)求m的值及y1、y2的函数表达式;(2)不等式y2>y1的解集是 ;(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S的取值范围.
22.(10分)已知BC是⊙O的直径,BF是弦,AD过圆心O,AD⊥BF,AE⊥BC于E,连接FC.(1)如图1,若OE=2,求CF;(2)如图2,连接DE,并延长交FC的延长线于G,连接AG,请你判断直线AG与⊙O的位置关系,并说明理由.23.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.
(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)25.(12分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.26.(14分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
参考答案与试题解析 一.选择题1.【解答】解:A、=﹣2,﹣=﹣2,故=﹣;B、﹣的立方根为:﹣,故此选项错误;C、立方根等于本身的数是0,±1,故此选项错误;D、﹣8的立方根是﹣2,故此选项错误;故选:A.2.【解答】解:A、错误.2a+3a=5a;B、错误.=5;C、错误.a3•a4=a7;D、正确.∵π﹣3≠0,∴(π﹣3)0=1.故选:D.3.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:A.5.【解答】解:==29.8,∵数据29出现两次最多,∴众数为29,中位数为29,极差为:32﹣28=4.故选:B.
6.【解答】解:S阴影部分=S扇形ACE+S扇形BCD﹣S△ABC,∵S扇形ACE=,S扇形BCD=,S△ABC=×6×6=18,∴S阴影部分=12π+3π﹣18=15.故选:C. 二.填空题7.【解答】解:=44,=45,∵44<45,∴﹣2>﹣3.故答案为:>.8.【解答】解:209506≈2.10×105(精确到千位).故答案为2.10×105.9.【解答】解:设===,则a=3k,b=4k,c=5k,则分式=.故答案为.10.【解答】解:解决上述问题要经历的几个重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体.故答案为:②①④⑤③.11.【解答】解:由于一个圆平均分成6个相等的扇形,在这6种等可能结果中,指针指向写有红色的扇形有2种可能结果,所以指针指到红色的概率是=;故答案为:.12.【解答】解:多边形的每个外角相等,且其和为360°,
据此可得=40,解得n=9.故答案为9.13.【解答】解:∵四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,∴=,则==.故答案为:.14.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.15.【解答】解:∵墨迹覆盖的数在3~4,即~,∴符合条件的数是.故答案为:.16.【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,
∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2(定值),故④正确;故答案为:②③④. 三.解答题17.解:(1)原式=2+1﹣3+2×=2+1﹣3+1=1;(2)去分母得3(x﹣1)=2x,解得x=3,检验:当x=3时,x(x﹣1)≠0,所以原方程的解为x=3.
18.解:(1)本次调查的样本容量是15÷25%=60;(2)选择C的人数为:60﹣15﹣10﹣12=23(人),补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约有1380人.19.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.
在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.21.【解答】解:(1)将B(2,1)代入y2=,得1=,[来源:学§科§网]∴k2=2,∴y2=,将A(1,m)代入y2=,得m=2,分别将A(1,2),B(2,1)代入y1=k1x+b,得,解得,∴y1=﹣x+3;(2)由函数图象知当0<x<1或x>2时,双曲线在直线上方,所以不等式y2>y1的解集是0<x<1或x>2,故答案为:0<x<1或x>2;(3)设点P(x,y),E(a,0),∵点P在线段AB上,∴y=﹣x+3且1≤x≤2,S=×(a+y)x﹣ax=xy=x(﹣x+3)
=﹣x2+x=﹣(x﹣)2+,∵1≤x≤2,∵﹣,∴当x=时,S最大=,当x=1或2时,S最小=1,∴△PED的面积S的取值范围是1≤S≤.22.解:(1)∵BC是⊙O的直径,AD过圆心O,AD⊥BF,AE⊥BC于E,∴∠AEO=∠BDO=90°,OA=OB,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OE=OD=2,∵BC是⊙O的直径,∴∠CFB=90°,即CF⊥BF,∴OD∥CF,∵O为BC的中点,∴OD为△BFC的中位线,∴CF=2OD=4;(2)直线AG与⊙O相切,理由如下:连接AB,如图所示:∵OA=OB,OE=OD,∴△OAB与△ODE为等腰三角形,∵∠AOB=∠DOE,∴∠ADG=∠OED=∠BAD=∠ABO,∵∠GDF+∠ADG=90°=∠BAD+∠ABD,∴∠GDF=∠ABD,
∵OD为△BFC的中位线,[来源:Z。xx。k.Com]∴BD=DF,在△ABD和△GDF中,,∴△ABD≌△GDF(ASA),∴AD=GF,∵AD⊥BF,GF⊥BF,∴AD∥GF,∴四边形ADFG为矩形,∴AG⊥OA,∴直线AG与⊙O相切.23.【解答】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200(40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.
(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向上,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.24.解:过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×0.92=478.4km,BD=AB•cos67°=520×0.38=197.6km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=197.6×≈113.9km,∴AC=AD+CD=478.4+113.9≈592(km).答:A地到C地之间高铁线路的长为592km.25.【解答】解:(1)①如图2中,∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M
∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.26.解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当x=0时,y=﹣x2+2x+3=3,∴点C的坐标为(0,3).若四边形CDPM是平行四边形,则CE=PE,DE=ME,∵点C的横坐标为0,点E的横坐标为1,∴点P的横坐标t=1×2﹣0=2,∴点P的坐标为(2,3),∴点E的坐标为(1,3),∴点M的坐标为(1,6).故在直线l上存在点M,使得四边形CDPM是平行四边形,点M的坐标为(1,6).(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,
,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).