中考数学模拟练习卷一.选择题(本大题共10个小题,每小题3分,共30分)1.实数的倒数是( )A.B.C.D.2.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.15°B.20°C.25°D.30°3.下列计算正确的是( )A.﹣=B.=±2C.a6÷a2=a3D.(﹣a2)3=﹣a64.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )A.B.C.D.5.在下列交通标志中,是中心对称图形的是( )A.B.C.D.6.一元一次不等式组的解集中,整数解的个数是( )A.4B.5C.6D.77.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△
CDE的周长是( )A.7B.10C.11D.128.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是( )A.方差是8B.极差是9C.众数是﹣1D.平均数是﹣19.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )A.2B.3C.4D.610.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是( )A.B.C.D. 二.填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上.11.
据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学记数法表示,可记为 .12.已知关于x的方程有解,则k的取值范围是 .13.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是 .14.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第 象限.[来源:学+科+网]15.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是 米.16.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为 . 三、解答题(本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.)17.(6分)已知a2+2a=9,求的值.18.(6分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?19.(6分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:
(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客 万人,扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是 .20.(7分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.21.(7分)如图,反比例函数y=(x>0)的图象与一次函数y=3x的图象相交于点A,其横坐标为2.(1)求k的值;(2)点B为此反比例函数图象上一点,其纵坐标为3.过点B作CB∥OA,交x轴于点C,求点C的坐标.
22.(8分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.23.(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201524.(10分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.
25.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.(1)求抛物线的解析式;(2)当PO+PC的值最小时,求点P的坐标;(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
参考答案与试题解析 一.选择题1.【解答】解:=,的倒数是,故选:D.2.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.3.【解答】解:A、不是同类二次根式,不能合并,故A选项错误;B、=2≠±2,故B选项错误;C、a6÷a2=a4≠a3,故C选项错误;D、(﹣a2)3=﹣a6,故D选项正确.故选:D.4.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.5.【解答】解:A、不是中心对称图形,B、不是中心对称图形,C、是中心对称图形,D、不是中心对称图形,故选:C.6.【解答】解:∵解不等式①得:x>﹣0.5,解不等式②得:x≤5,
∴不等式组的解集为﹣0.5<x≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C.7.【解答】解:利用作图得MN垂直平分AC,∴EA=EC,∴△CDE的周长=CE+CD+ED=AE+ED+CD=AD+CD,∵四边形ABCD为平行四边形,∴AD=BC=6,CD=AB=4,∴△CDE的周长=6+4=10.故选:B.8.【解答】解:根据题意可知x=﹣1,平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1,∵数据﹣1出现两次最多,∴众数为﹣1,极差=3﹣(﹣6)=9,方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9.故选:A.9.【解答】解:设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选:C.
10.【解答】解:当点Q在AD上时,∵∠DAC=45°,AP=x,AB=AD=DC=,∴PQ=xtan45°=x,∴y=×AP×PQ=×x×x=x2当点Q在DC上时,如下图所示:∵AP=x,AB=2,∠DAC=45°,∴y=×AP×PQ=x•(2﹣x)=﹣x2+x.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B. 二.填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上.11.【解答】解:3.86亿=386000000=3.86×108;[来源:Z,xx,k.Com]故答案为:3.86×108.12.【解答】解:去分母得:1﹣x+2(x﹣2)=﹣k,1﹣x+2x﹣4=﹣k,x﹣3=﹣k,x=3﹣k,∵关于x的方程有解,∴x﹣2≠0,x≠2,∴3﹣k≠2,解得:k≠1,故答案为:k≠1.13.【解答】解:画树状图如下:
由树状图可知共有8种等可能结果,其中仅有一次摸到红球的有3种结果,所以仅有一次摸到红球的概率为,故答案为:.14.【解答】解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△=4+4m<0,解得m<﹣1,∴m+1<0,m﹣1<0,∴一次函数y=(m+1)x+m﹣1的图象经过二三四象限,不经过第一象限.故答案为:一.15.【解答】解:如图,作AE⊥BC于点E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=150.在Rt△ACE中,根据勾股定理得:AC=100.即此时王英同学离A地的距离是100米.故答案为:100.16.【解答】解:作OH⊥AC于H.连接OD.
∵AD平分∠BAC,∴∠OAD=∠DAC,∵OA=OD,∴∠OAD=∠ODA=∠DAC,∴OD∥AE,∵DE是⊙O切线,∴OD⊥DE,∴AE⊥DE,∴∠OHE=∠E=∠ODE=90°,∴四边形ODEH是矩形,∴OH=ED=3,HE=OD=5,∵OA=5,∴AH=HC=4,∴AE=AH+HE=9,当点D′在AB左侧时,AE′=1,故答案为1或9. 三、解答题(本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.)17.【解答】解:===,∵a2+2a=9,∴(a+1)2=10,∴原式=.18.【解答】解:设去年的总收入为x万元,总支出为y万元.根据题意,得
解这个方程组,得,∴(1+10%)x=220,(1﹣20%)y=120.答:今年的总收入为220万元,总支出为120万元.19.【解答】解:(1)该市景点共接待游客数为:9÷18%=50(万人)则该市A,B,C,D,E这五个景点共接待游客50﹣4=46(万人),扇形统计图中E景点所对应的圆心角的度数是:×360°=43.2°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,108°;(2)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.20.【解答】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥BC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,∵,∴△BDE≌△BCE(SAS);(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴四边形ABED为菱形.21.【解答】解:(1)∵点A在直线y=3x上,其横坐标为2.∴y=3×2=6,∴A(2,6),把点A(2,6)代入,得,解得:k=12.(2)由(1)得:,∵点B为此反比例函数图象上一点,其纵坐标为3,∴,解得x=4,∴B(4,3),∵CB∥OA,∴设直线BC的解析式为y=3x+b,把点B(4,3)代入y=3x+b,得3×4+b=3,解得:b=﹣9,∴直线BC的解析式为y=3x﹣9,当y=0时,3x﹣9=0,解得:x=3,∴C(3,0).22.【解答】(1)证明:连接OP,
∵AC是⊙O的切线,∴OP⊥AC,BC⊥AC,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC.(2)作PH⊥AB于H.∵PB平分∠ABC,PC⊥BC,PH⊥AB,∴PC=PH=1,在Rt△APH中,AH==2,∵∠A=∠A,∠AHP=∠C=90°,∴△APH∽△ABC,∴=,∴=,∴AB=3,∴BH=AB﹣AH=,在Rt△PBC和Rt△PBH中,,∴Rt△PBC≌Rt△PBH,∴BC=BH=.23.【解答】解:(1)根据题意可得:
y=20x+15(600﹣x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;[来源:Z.Com](2)根据题意,得:50x+35(600﹣x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20﹣)x+15(600﹣x)=﹣(x﹣250)2+9625,∵,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.24.【解答】解:(1)证明:∵∠ABE=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴,(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED=∠ABC,∵∠AED=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,
∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE.(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴EF===.
25.【解答】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线的顶点的横坐标为2,∵顶点在BC边上,∴抛物线顶点坐标为(2,3),设抛物线解析式为y=a(x﹣2)2+3,把(0,0)坐标代入可得0=a(0﹣2)2+3,解得a=,∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;(2)连接PA,如图,∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC=PA+PC.当点P与点D重合时,PA+PC=AC;当点P不与点D重合时,PA+PC>AC;∴当点P与点D重合时,PO+PC的值最小,设直线AC的解析式为y=kx+b,根据题意,得,解得∴直线AC的解析式为y=﹣x+3,当x=2时,y=﹣x+3=,则D(2,),∴当PO+PC的值最小时,点P的坐标为(2,);
(3)存在.当以AC为对角线时,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);当AC为边时,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,y=x2+3x=﹣9,此时Q(6,﹣9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,﹣6);当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为﹣2,当x=﹣2时,y=x2+3x=﹣9,此时Q(﹣2,﹣9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,﹣12);综上所述,P(2,0),Q(2,3)或P(2,﹣6),Q(6,﹣9)或P(2,﹣12),Q(﹣2,﹣9).