(山东版)2022年中考数学模拟练习卷13(含答案)
加入VIP免费下载

(山东版)2022年中考数学模拟练习卷13(含答案)

ID:1219450

大小:386.5 KB

页数:19页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
中考数学模拟练习卷一、选择题(本大题共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的值为(  )A.±3B.3C.﹣3D.9【解答】解:的值为3.故选:B. 2.(3分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )A.B.C.D.【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴A=30°,∴B=60°,∴sinB=.故选:A. 3.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是(  )A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A. 4.(3分)下列代数运算正确的是(  )A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4D.(2x)3=2x3【解答】解:A、x•x6=x7,原式计算错误,故本选项错误; B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选:B. 5.(3分)一组数据2,6,2,5,4,则这组数据的中位数是(  )A.2B.4C.5D.6【解答】解:从小到大排列此数据为:2、2、4、5、6,则这组数据的中位数是4,故选:B. 6.(3分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(  )A.7.2cmB.5.4cmC.3.6cmD.0.6cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选:B. 7.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示﹣1的点是(  ) A.点MB.点NC.点PD.点Q【解答】解:∵3.5<<4,∴2.5<﹣1<3,∴表示﹣1的点是Q点,故选:D. 8.(3分)如图,在四边形ABCD中,点D在线段AB、BC的垂直平分线上,若∠D=110°,则∠B度数为(  )A.110°B.115°C.120°D.125°【解答】解:连接BD,∵点D在线段AB、BC的垂直平分线上,∴BD=AD,DC=BD,∴∠A=∠ABD,∠C=∠CBD,∴∠ABC=∠ABD+∠CBD=∠A+∠C,∴∠ABC=(360°﹣∠D)÷2=125°.故选:D. 9.(3分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC交于点E,下列结论中不一定成立的是(  ) A.AD=DCB.∠ACB=90°C.△AOD是等边三角形D.BC=2EO【解答】解:连接CD,∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴DO⊥AC,∴AD=CD,故A、B正确;∵AO=DO,不一定等于AD,因此C错误;∵O为圆心,∴AO:AB=1:2,∵EO∥BC,∴△AEO∽△ACB,∴EO:AB=AO:BC=1:2,∴BC=2EO,故D正确;故选:C. 10.(3分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣,y=的图象交于B、A两点,则tan∠OAB的值的变化趋势为:(  ) A.逐渐变小B.逐渐变大C.时大时小D.保持不变【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn==4;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴====②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,故选:D.  11.(3分)某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为(  )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.【解答】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF﹣∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92≈1.9米.故选:A. 12.(3分)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有(  ) A.160B.161C.162D.163【解答】方法一:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故选B.方法二:,,,,…,∴,⇒(a2﹣a1)+(a3﹣a2)+(a4﹣a3)+…+(an﹣an﹣1)=an﹣a1,∴an﹣a1=4×(3+32+…+3n﹣1)=4×(3+32+…+3n﹣1)=(用错位相减法可求出)∴,∵a1=5,∴. 二、填空题(本大题共5小题,每小题3分,共15分,只要求写出最后结果)13.(3分)已知==3,则(b+d≠0)的值是 3 . 【解答】解:由==3,得3b=a,3d=c,∴.故答案为:3 14.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为  .【解答】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:. 15.(3分)如果关于x的方程x2﹣3x+m=0没有实数根,那么m的取值范围是  .【解答】解:∵关于x的方程x2﹣3x+m=0没有实数根,∴b2﹣4ac=(﹣3)2﹣4×1×m<0,解得:m>,故答案为:m>. 16.(3分)一个滑轮起重装置如图所示,滑轮的半径是10cm,当滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度为120°时,重物上升 π cm(结果保留π).【解答】解:l= =πcm;故答案为π. 17.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C,在下面四个结论中:①2a+b=0;②c=﹣3a;③只有当a=时,△ABD是等腰直角三角形;④使△ACB为等腰三角形的a的值有三个.其中正确的结论是 ①②③ .(请把正确结论的序号都填上)【解答】解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①正确;②∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故②正确;③要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;D到x轴的距离就是当x=1时y的值的绝对值.当x=1时,y=a+b+c,即|a+b+c|=2, ∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=,c=﹣.故③正确;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=3,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.所以④错误.故答案为:①②③.  三、解答题(本大题共8小题,共计69分。解答要写出必要的文字说明、证明过程或推演步骤)18.(7分)解不等式组,并把解集在数轴上表示出来.【解答】解:∵解不等式①,得x≤1,解不等式②,得x>﹣3,∴不等式组的解是﹣3<x≤1,在数轴上表示为:. 19.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【解答】解:(1)如图所示,△A1B1C1即为所求, A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π. 20.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,BE∥AC,CE∥BD,△ABO是等边三角形,试判断四边形BECO的形状,并给出证明.【解答】证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵△ABO是等边三角形,∴AO=BO,∴BO=CO=DO=AO,又∵BE∥AC,CE∥BD,∴四边形BECO是平行四边形,∴四边形BECO是菱形.  21.(8分)为了“绿色出行”,王经理上班出行由自驾车改为乘坐地铁出行,已知他家距上班地点21千米,他用地铁方式平均每小时出行的路程,比用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的,求王经理地铁出行方式上班的平均速度.【解答】解:设自驾车平均每小时行驶的路程为xkm,则有:×=解得:x=15经检验:x=15是原方程的解且符合题意,则地铁的速度为:15×2+5=35(km/h)答:王经理地铁出行方式上班的平均速度是35km/h 22.(8分)某校决定在4月7日开展“世界无烟日”宣传活动,活动有A社区板报、B集会演讲、C喇叭广播、D发宣传画四种宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了两种不完整的统计图表:选项方式百分比A社区板报35%B集会演讲mC喇叭广播25%D发宣传画10%请结合统计图表,回答下列问题:(1)本次抽查的学生共 300 人,m= 30% ,并将条形统计图补充完整;(2)若该校学生有1500人,请你估计该校喜欢“集会演讲”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四种宣传方式在随机抽取两种进行展示,请用树状图或列表法求某班所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率. 【解答】解:(1)本次调查的学生共有105÷35%=300(人),m=1﹣(35%+25%+10%)=30%,B项目的人数为:300×30%=90(人),补全条形图如下:故答案为:300,30%;(2)1500×30%=450(人),答:估计该校喜欢“集会演讲”这项宣传方式的学生约有450人;(3)画树状图为:共有12种等可能的结果数,其中所抽到的两项方式恰好是“集会演讲”和“喇叭广播”的结果数为2,∴所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率为=. 23.(8分)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图① 所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解答】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=,故y与x之间的关系式为y=x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则,解得:,故z与x之间的关系式为z=﹣x+30;(2)W=zx﹣y=﹣x2+30x﹣x2=﹣x2+30x=﹣(x2﹣150x) =﹣(x﹣75)2+1125,∵﹣<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元. 24.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.【解答】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB, ∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4. 25.(12分)如图,抛物线y=ax2+x+c过A(﹣1,0),B(0,2)两点.(1)求抛物线的解析式.(2)M为抛物线对称轴与x轴的交点,N为x轴上对称轴上任意一点,若tan∠ ANM=,求M到AN的距离.(3)在抛物线的对称轴上是否存在点P,使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+x+c过A(﹣1,0),B(0,2)两点,∴∴,∴抛物线解析式为y=﹣x2+x+2;(2)由(1)有,抛物线解析式为y=﹣x2+x+2;∴抛物线对称轴为x=1,∴M(1,0),∴AM=2,∵tan∠ANM=,∴,[来源:学§科§网Z§X§X§K]∴MN=4,∵N为x轴上对称轴上任意一点,∴N(1,4),∴AN==2,设M到AN的距离为h,在Rt△AMN中,AM×MN=AN×h, ∴h===,∴M到AN的距离;(3)存在,理由:设点P(1,m),∵A(﹣1,0),B(0,2),∴AB=,AP=,BP=,∵△PAB为等腰三角形,∴①当AB=AP时,∴=,∴m=±1,∴P(1,1)或P(1,﹣1),②当AB=BP时,∴=,∴m=4或m=0,∴P(1,4)(此时点A,B,P三点共线,故舍去)或P(1,0);③当AP=BP时,∴=,∴m=,∴P(1,);即:满足条件的点P的坐标为P(1,1)或P(1,﹣1)或P(1,0)或P(1,). 

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料