中考数学模拟练习卷一.选择题(满分20分,每小题2分)1.计算的正确结果是( )A.B.C.1D.﹣12.将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是( )A.3x﹣9yB.3x+9yC.a﹣bD.3(a﹣b)3.如图所示的圆柱体从正面看得到的图形可能是( )A.B.C.D.4.我县人口约为530060人,用科学记数法可表示为( )A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分.A.85B.86C.87D.886.在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为( )A.﹣1<a≤0B.0≤a<1C.﹣1<a<1D.﹣2<a<27.如图,在△ABC中,P、Q分别是BC.AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有( )①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.
A.4个B.3个C.2个D.1个8.方程解是( )A.B.x=4C.x=3D.x=﹣49.已知反比例函数y=的图象经过点P(﹣2,3),则下列各点也在这个函数图象的是( )A.(﹣1,﹣6)B.(1,6)C.(3,﹣2)D.(3,2)10.二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0.其中正确的结论有( )A.4个B.3个C.2个D.1个二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算:(6x4﹣8x3)÷(﹣2x2)=_____________.12.(3分)小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是__________-市场.13.(3分)已知关于x的一元二次方程x2+bx+1=0有两个相等的实数根,则b的值为_________.14.(3分)如图,已知AB∥CF,E为DF的中点,若AB=8,CF=5,则BD=________.15.(3分)已知关于x的不等式组有5个整数解,则a的取值范围是________.16.(3分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA中点,点P在边BC上运动,当△
ODP是等腰三角形时,点P的坐标为_________.三.解答题(共3小题,满分22分)17.(6分)已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.18.(8分)如图,△ABC中,AD是高,E.F分别是AB.AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?请证明你的结论.19.(8分)不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;(2)两次取的小球是一红一白的概率.四.解答题(共2小题,满分16分,每小题8分)20.(8分)2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为100分)进行统计,绘制了图中两幅不完整的统计图.
(1)a=_______,n=_________;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?21.(8分)某商场用2700元购进甲、乙两种商品共100件,这两种商品的进价、标价如下表所示:类型价格甲种乙种进价(元/件)1535标价(元/件)2045(1)求购进两种商品各多少件?(2)商场将两种商品全部卖出后,获得的利润是多少元?五.解答题(共4小题,满分44分)22.(10分)如图,在平行四边形ABCD中,以A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,求图中阴影部分的面积.23.(10分)如图,Rt△AOB在平面直角坐标系中,点O与坐标原点重合,点A在x轴上,点B在y轴上,OB=2,AO=6,∠ABO的角平分线BE与AB的垂直平分线DE的交点E在AO上.
(1)求直线BE的解析式;(2)求点D的坐标;(3)x轴上是否存在点P,使△PAD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.(12分)点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;(2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.25.(12分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A.B.C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A.B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;
(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.
参考答案一.选择题1.解:=﹣()=﹣1.故选:D.2.解:将3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)因式分解,应提的公因式是3(a﹣b).故选:D.3.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.4.解:∵530060是6位数,∴10的指数应是5,故选:B.5.解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选:D.6.解:∵点A(a,0)在点B(2﹣a,0)的左边,∴a<2﹣a,解得:a<1,记边AB,BC,AC所围成的区域(含边界)为区域M,则落在区域M的横纵坐标都为整数的点个数为4个,∵点A,B,C的坐标分别是(a,0),(2﹣a,0),(1,﹣1),∴区域M的内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域M的边界上,∵点C(1,﹣1)的横纵坐标都为整数且在区域M的边界上,∴其他的3个都在线段AB上,∴2≤2﹣a<3.解得:﹣1<a≤0,故选:A.7.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,
∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.8.解:两边都乘以(x﹣1)(x+2),得:2(x﹣1)=x+2,解得:x=4,检验:x=4时,(x﹣1)(x+2)=3×6=18≠0,∴原分式方程的解为x=4,故选:B.9.解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,3),
∴k=﹣2×3=﹣6.A.﹣1×(﹣6)=6;B.1×6=6;C.﹣3×2=﹣6;D.2×3=6.故选:C.10.解:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y轴的交点在y轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,b>0∴abc<0,故正确;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,故正确.综上所述,正确的结论有3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)
11.解;原式=6x4÷(﹣2x2)﹣8x3÷(﹣2x2)=﹣3x2+4x,故答案为:﹣3x2+4x.12.解:∵S甲2=7.5,S乙2=1.5,S丙2=3.1,∴S甲2>S丙2>S乙2,∴该月份白菜价格最稳定的是乙市场;故答案为:乙.13.解:根据题意知,△=b2﹣4=0,解得:b=±2,故答案为:±2.14.解:∵AB∥CF,∴∠A=∠ACF,∠AED=∠CEF,在△AED和△CEF中,,∴△AED≌△CEF(AAS),∴FC=AD=5,∴BD=AB﹣AD=8﹣5=3.故答案为:3.15.解:,由①得:x≤3,由②得:x>a,∴不等式的解集为:a<x≤3,∵关于x的不等式组有5个整数解,∴x=﹣1,0,1,2,3,∴a的取值范围是:﹣2≤a<﹣1.故答案为:﹣2≤a<﹣1.
16.解:当P1O=OD=5时,由勾股定理可以求得P1C=3,P2O=P2D时,作P2E⊥OA,∴OE=ED=2.5;当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,∴P3C=2;当P4D=OD=5时,作P4G⊥OA,由勾股定理,得DG=3,∴OG=8.∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4).故答案为:(2,4)或(2.5,4)或(3,4)或(8,4).三.解答题(共3小题,满分22分)17.解:(x﹣y)2﹣(x+2y)(x﹣2y)=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2,由,得,∴当x=﹣1,y=2时,原式=﹣2×(﹣1)×2+5×22=4+20=24.18.解:(1)∵E.F分别是AB.AC的中点,∴AE=AB=5,AF=AC=4,∵AD是高,E.F分别是AB.AC的中点,∴DE=AB=5,DF=AC=4,∴四边形AEDF的周长=AE+ED+DF+FA=18;(2)EF垂直平分AD.证明:∵AD是ABC的高,∴∠ADB=∠ADC=90°,
∵E是AB的中点,∴DE=AE,同理:DF=AF,∴E.F在线段AD的垂直平分线上,∴EF垂直平分AD.19.解:(1)根据题意,有两次取的小球都是红球的概率为;(2)由(1)可得,两次取的小球是一红一白的有4种;故其概率为.四.解答题(共2小题,满分16分,每小题8分)20.解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75.54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:
(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.21.解:(1)设购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:购进甲种商品40件,乙种商品60件.(2)40×(20﹣15)+60×(45﹣35)=800(元).答:商场将两种商品全部卖出后,获得的利润是800元.五.解答题(共4小题,满分44分)22.解:如图所示,∵CD与⊙A相切,∴CD⊥AC,在平行四边形ABCD中,∵AB=DC,AB∥CD,AD∥BC,∴BA⊥AC,∵AB=AC∴∠ACB=∠B=45°,∵,AD∥BC∴∠FAE=∠B=45°,∠DAC=∠ACB=45°=∠FAE,∴=,∴的长度=,解得R=2,∴S阴影=S△ACD﹣S扇形=×22﹣=2﹣.
23.解:(1)∵OB=2,AO=6,∴AB=,点B的坐标为(0,2),∴sin∠BAO==,∴∠BAO=30°,∴∠ABO=60°,∵∠ABO的角平分线BE与AB的垂直平分线DE的交点E在AO上,∴∠EBO=30°,∴OE=OB•tan∠EBO==2,∴点E的坐标为(﹣2,0),设直线BE的解析式为y=kx+b,,得,即直线BE的解析式为y=x+2;(2)∵OB=2,AO=6,∠ABO的角平分线BE与AB的垂直平分线DE的交点E在AO上,∴点B(0,2),点A(﹣6,0),∴点D的坐标为(﹣3,);(3)点P的坐标为(2﹣6,0),(﹣6﹣2,0)或(0,0),(﹣4,0),理由:当AD=AP时,∵点D为AB的中点,AB=4,∴AD=2,∴AP=2,∴点P的坐标为(﹣6+2,0),(﹣6﹣2,0);当DA=DP时,∵AD=2,
∴DP=2,∵点A(﹣6,0),点D(﹣3,),∴点P的坐标为(0,0);当点P在AD的垂直平分线上时,与x轴交于点P,∵点A(﹣6,0),点D(﹣3,),∠DAE=30°,AD=2,∴AP=,∴点P的坐标为(﹣4,0),由上可得,点P的坐标为(2﹣6,0),(﹣6﹣2,0)或(0,0),(﹣4,0).24.解:(1)OE=OF.理由:如图1,∵四边形ABCD是矩形,∴OA=OC,∵AE⊥BP,CF⊥BP,∴∠AEO=∠CFO=90°,∵在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)补全图形如右图2,OE=OF仍然成立.证明:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,又∵点O为AC的中点,∴AO=CO,在△AOE和△COG中,
,∴△AOE≌△COG(ASA),∴OG=OE,∴Rt△EFG中,OF=EG,∴OE=OF;(3)CF=OE+AE或CF=OE﹣AE.证明:①如图2,当点P在线段OA上时,∵∠OEF=30°,∠EFG=90°,∴∠OGF=60°,由(2)可得,OF=OG,∴△OGF是等边三角形,∴FG=OF=OE,由(2)可得,△AOE≌△COG,∴CG=AE,又∵CF=GF+CG,∴CF=OE+AE;②如图3,当点P在线段OA延长线上时,∵∠OEF=30°,∠EFG=90°,∴∠OGF=60°,同理可得,△OGF是等边三角形,∴FG=OF=OE,同理可得,△AOE≌△COG,∴CG=AE,又∵CF=GF﹣CG,∴CF=OE﹣AE.
25.解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴
解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=AM×EM=.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC=.∵FG=2DQ,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).