中考数学模拟练习卷一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是( )A.3B.C.﹣D.﹣32.下列二次根式中,是最简二次根式的是( )A.B.C.D.3.已知x+=3,则x2+=( )A.7B.9C.11D.84.下列方程中,两根之和为2的是( )A.x2+2x﹣3=0B.x2﹣2x﹣3=0C.x2﹣2x+3=0D.4x2﹣2x﹣3=05.如图,如果AB∥CD,CD∥EF,那么∠BCE等于( )A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠26.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )A.3cmB.4cmC.5cmD.7cm7.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )A.0<b<2B.﹣3<b<﹣1C.﹣3≤b≤﹣1D.b=﹣1或﹣38.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1
的坐标是(1,2),则点A1,C1的坐标分别是( )A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)9.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( )A.1或﹣2B.或C.D.110.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A.18分,17分B.20分,17分C.20分,19分D.20分,20分11.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有( )A.4个B.5个C.6个D.7个12.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,( )A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2
C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2 二.填空题(共6小题,满分18分,每小题3分)13.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为 .14.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是 .15.半径是6cm的圆内接正三角形的边长是 cm.16.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为 .17.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形 对,有面积相等但不全等的三角形 对.18.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 米(结果精确到0.1,参考数据:=1.41,=1.73)
三.解答题(共6小题,满分46分)19.(6分)计算:.20.(6分)先化简,再求代数式(﹣)÷的值,其中a=2sin45°+tan45°.21.(8分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.22.(8分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(﹣6,﹣1),点C1的坐标为(﹣3,2),则点B的坐标为 ;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1:2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为 ,计算四边形ABCP的周长为 .23.
(9分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<6020.04二60≤x<70[来源:学#科#网Z#X#X#K]100.2三70≤x<8014b四80≤x<90a0.32五90≤x<10080.16请根据表格提供的信息,解答以下问题:[来源:学。科。网](1)本次决赛共有 名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .24.(9分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案? 四.解答题(共2小题,满分20分)25.(9分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.26.(11分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
参考答案与试题解析一.选择题1.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.【解答】解:A、=4,不符合题意;B、是最简二次根式,符合题意;C、=,不符合题意;D、=,不符合题意;故选:B.3.【解答】解:∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故选:A.4.【解答】解:在方程x2+2x﹣3=0中,两根之和等于﹣2,故A不符合题意;在方程x2﹣2x﹣3=0中,两根之和等于2,故B符合题意;在方程x2﹣2x+3=0中,△=(﹣2)2﹣4×3=﹣8<0,则该方程无实数根,故C不符合题意;在方程4x2﹣2x﹣3=0中,两根之和等于﹣=,故D不符合题意,故选:B.5.【解答】解:∵AB∥CD,CD∥EF.∴∠BCD=∠1,∠ECD=180°﹣∠2.∴∠BCE=180°﹣∠2+∠1.故选:C.
6.【解答】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选:D.7.【解答】解:∵﹣1<2x+b<1∴,∵关于x的不等式组﹣1<2x+b<1的解满足0<x<2,∴,解得:﹣3≤b≤﹣1,故选:C.8.【解答】解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选:A.9.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.10.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,
故选:D.11.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则组成这个几何体的小正方体最少有5个.故选:B.12.【解答】解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D. 二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:5.5亿=550000000=5.5×108,故答案为:5.5×108.
14.【解答】解:∵数据x1,x2,x3,x4,x5的平均数是3,∴x1+x2+x3+x4+x5=15,则新数据的平均数为==6,故答案为:6.15.【解答】解:如图所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO是∠ABC的平分线;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根据垂径定理,BC=2×BD=6,故答案为6.16.【解答】解:如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,
则S△AOB=2S△ODF=,即OA•BE=,∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.17.【解答】解:有,Rt△ABD≌Rt△CDB,理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.故答案为:1;4.18.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米),故答案为:2.9. 三.解答题(共6小题,满分46分)19.【解答】解:原式=()2×﹣5﹣5=5﹣5﹣
=4﹣5.20.【解答】解:原式=(﹣)×(a+1)=×(a+1)=当a=2sin45°+tan45°=2×+1=+1时原式===.21.【解答】解:(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=6.22.【解答】解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为:(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为:6+4.23.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.24.【解答】解(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,由题意,得,解得:.答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90﹣m)件,由题意,得,解得:41<m<45.∵m是整数,∴m=42,43,44.则90﹣m=48,47,46.答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;方案三:购买“最美东营人”文化衫44件,“最美志愿者”文化衫46件. 四.解答题(共2小题,满分20分)25.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;
(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.26.【解答】解:(1)将点(﹣6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得
解得:∴抛物线解析式为:y=﹣x2﹣x+3(2)①存在点D,使得△APQ和△CDO全等当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等∴tan∠QAP=tan∠DCO∴∴OD=∴点D坐标为(﹣,0)由对称性,当点D坐标为(,0)时,由点B坐标为(4,0)此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4∴BC=5∵∠DCB=∠CDB∴BD=BC=5∴OD=BD﹣OB=1则点D坐标为(﹣1,0)且AD=BD=5连DN,CM
则DN=DM,∠NDC=∠MDC∴∠NDC=∠DCB∴DN∥BC∴则点N为AC中点.∴DN时△ABC的中位线∵DN=DM=BC=∴OM=DM﹣OD=∴点M(,0)