人教版数学九年级上册期末模拟试卷三(含答案)
加入VIP免费下载

人教版数学九年级上册期末模拟试卷三(含答案)

ID:1219595

大小:304.5 KB

页数:22页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教版数学九年级上册期末模拟试卷一、选择题1.方程x(x﹣5)=0化成一般形式后,它的常数项是(  )A.﹣5B.5C.0D.12.二次函数y=2(x﹣3)2﹣6(  )A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为33.下列交通标志中,是中心对称图形的是(  )A.B.C.D.4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则(  )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是(  )A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.一元二次方程x2+2x+m=0有两个不相等的实数根,则(  )A.m>3B.m=3C.m<3D.m≤37.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是(  ) A.相离B.相切C.相交D.相交或相切8.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是(  )A.πB.2πC.4πD.6π9.如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是(  )A.1个B.2个C.3个D.4个10.二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是(  )A.﹣6B.﹣2C.2D.3二、填空题11.一元二次方程x2﹣a=0的一个根是2,则a的值是  .12.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是  .13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是  .14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高xm,列方程,并化成一般形式是  .15.如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=  . 16.在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AODC.当∠A=  °时,线段BD最长.三、解答题17.解方程:x2+x﹣3=0.18.如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果 (2)请直接写出事件“取出至少一个红球”的概率.20.如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移  个单位时,四边形ABCD为菱形;(2)当a=  时,四边形ABCD为正方形.21.如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长. 22.投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为xm(1)设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.23.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=  ;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长. 24.已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标. 参考答案1.方程x(x﹣5)=0化成一般形式后,它的常数项是(  )A.﹣5B.5C.0D.1【解答】解:∵x(x﹣5)=0∴x2﹣5x=0,∴方程x(x﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.二次函数y=2(x﹣3)2﹣6(  )A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.下列交通标志中,是中心对称图形的是(  )A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则(  )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件, 故选:C.5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是(  )A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.一元二次方程x2+2x+m=0有两个不相等的实数根,则(  )A.m>3B.m=3C.m<3D.m≤3【解答】解:∵一元二次方程x2+2x+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是(  )A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是(  ) A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是(  )A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD=70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B. 10.二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是(  )A.﹣6B.﹣2C.2D.3【解答】解:把二次函数y=﹣x2﹣2x+c转化成顶点坐标式为y=﹣(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=﹣1,故当x=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x2﹣a=0的一个根是2,则a的值是 4 .【解答】解:把x=2代入方程x2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 y=2(x+2)2﹣1 .【解答】解:由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2﹣1,由“上加下减”的原则可知,将二次函数y=2x2﹣1的图象向左平移2个单位可得到函数y=2(x+2)2﹣1,故答案是:y=2(x+2)2﹣1.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是  .【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种, 所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高xm,列方程,并化成一般形式是 x2﹣6x+4=0 .【解答】解:设雕像的上部高xm,则题意得:,整理得:x2﹣6x+4=0,故答案为:x2﹣6x+4=015.如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=  .【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=. ∴=16.在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AODC.当∠A= 27 °时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB, ∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:x2+x﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴x=,∴x1=,x2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO⊥BD,∴=, ∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟, 所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移 2 个单位时,四边形ABCD为菱形;(2)当a= ﹣ 时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原来点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣. 21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=, ∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为xm(1)设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大, ∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED= 90° ;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH=x,∵AE=EC,∴AC=2AH=2x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°; 故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3, ∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣ 2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣x2+2x+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=kx+b的图象l经过抛物线上的点C(m,n),∴3k+b=0,∴b=﹣3k,∴一次函数的解析式为y=kx﹣3k,∵直线l与抛物线只有一个公共点,∴方程kx﹣3k=﹣x2+2x+3有两个相等的实数根,∴(k﹣2)2+4(3k+3)=0,解得k=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=kx+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)x+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2 ∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵k=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料