人教版数学九年级上册期末模拟试卷一、选择题1.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )A.B.C.D.2.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A.m<1B.m>﹣1C.m>1D.m<﹣13.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点4.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为( )A.B.C.D.5.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A.40°B.45°C.50°D.60°6.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( )A.96B.69C.66D.997.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为( )A.13B.15C.18D.13或188.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45
9.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是( )A.(2,3)B.(3,2)C.(1,3)D.(3,1)10.当ab>0时,y=ax2与y=ax+b的图象大致是( )A.B.C.D.二、填空题11.二次函数y=4(x﹣3)2+7的图象的顶点坐标是 .12.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为 .13.若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2018= .14.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为 .15.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r= .16.若二次函数y=(a﹣1)x2﹣4x+2a(a≠1)的图象与x轴有且只有一个交点,则a的值为 .三、解答题17.解方程:x2﹣x﹣12=0.
18.设a,b是方程x2+x﹣2018=0的两实数根,求a2+2a+b的值.19.如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2,求⊙O半径的长. 20.如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看作是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.
21.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.22.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
23.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如何提高售价,才能在半月内获得最大的利润?24.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线.
25.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )A.B.C.D.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.2.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A.m<1B.m>﹣1C.m>1D.m<﹣1【解答】解:由题意知,△=4﹣4m<0,∴m>1故选:C. 3.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C. 4.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为( )A.B.C.D.【解答】解:抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为=,故选:B.
5.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A.40°B.45°C.50°D.60°【解答】解:∵∠A=50°,OA=OB,∴∠OBA=∠OAB=50°,∴∠AOB=180°﹣50°﹣50°=80°,∵点C是的中点,∴∠BOC=∠AOB=40°,故选:A. 6.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( )A.96B.69C.66D.99【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B. 7.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为( )A.13B.15C.18D.13或18【解答】解:解方程x2﹣13x+36=0得,x=9或4,即第三边长为9或4.
边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选:A. 8.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∵共比赛了45场,∴x(x﹣1)=45,故选:A. 9.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是( )A.(2,3)B.(3,2)C.(1,3)D.(3,1)[来源:学+科+网]【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选:D.
10.当ab>0时,y=ax2与y=ax+b的图象大致是( )A.B.C.D.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D. 二、填空题(本大题共6小题,每小题4分,共24分)11.二次函数y=4(x﹣3)2+7的图象的顶点坐标是 (3,7) .【解答】解:∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为:(3,7). 12.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为 3 .【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=3.故答案为3. 13.若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2018= 1 .【解答】解:∵点P(m,﹣2)与点Q(3,n)关于原点对称,∴m=﹣3,n=2,则(m+n)2018=(﹣3+2)2018=1.故答案为:1.
14.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为 .【解答】解:画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:. 15.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r= 1 .【解答】解:如图,设△ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC,设半径为r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1.∴△ABC的内切圆的半径为1.故答案为;1.
16.若二次函数y=(a﹣1)x2﹣4x+2a(a≠1)的图象与x轴有且只有一个交点,则a的值为 ﹣1或2 .【解答】解:∵二次函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,故答案为:﹣1或2. 三、解答题(每小题6分,共18分)17.解方程:x2﹣x﹣12=0.【解答】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4. 18.设a,b是方程x2+x﹣2018=0的两实数根,求a2+2a+b的值.【解答】解:∵a,b是方程x2+x﹣2018=0的两实数根,∴a2+a=2018,a+b=﹣1,∴a2+2a+b=a2+a+a+b=2018﹣1=2017. 19.如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2,求⊙O半径的长.【解答】解:连接AO,
∵点C是弧AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴在Rt△AOD中,由勾股定理得:AD2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10[来源:Z&xx&k.Com]答:⊙O的半径长为10. 四、解答题(每小题7分,共21分)20.(7分)如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看作是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.【解答】解:(1)∵四边形ABCD是正方形,∴DC=BC,∠DCB=∠FCE=90°,在△DCF和△BCE中∴△DCF≌△BCE(SAS),∴△DCF可以看作是△BCE绕点C旋转90°而得到的图形;
(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,[来源:学。科。网]∴∠EFD=15°. 21.(7分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.【解答】解:设小正方形的边长为xcm,由题意得10×8﹣4x2=80%×10×8,80﹣4x2=64,4x2=16,x2=4.解得:x1=2,x2=﹣2,经检验x1=2符合题意,x2=﹣2不符合题意,舍去;所以x=2.答:截去的小正方形的边长为2cm. 22.(7分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
【解答】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙胜),故这个游戏不公平. 五、解答题(每小题9分,共27分)23.(9分)某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如何提高售价,才能在半月内获得最大的利润?【解答】解:设销售单价为x元,销售利润为y元.根据题意,得:y=(x﹣20)[400﹣20(x﹣30)]=(x﹣20)(1000﹣20x)=﹣20x2+1400x﹣20000=﹣20(x﹣35)2+4500,∵﹣20<0,∴x=35时,y有最大值,最大值为4500,35﹣30=5,所以,销售单价提高5元,才能在半月内获得最大利润4500元.
24.(9分)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线.【解答】证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线. 25.(9分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.