人教版数学九年级上册期中模拟试卷08(含答案)
加入VIP免费下载

人教版数学九年级上册期中模拟试卷08(含答案)

ID:1219616

大小:271 KB

页数:13页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教版数学九年级上册期中模拟试卷一.选择题1.方程x2﹣4x﹣12=0的解为(  )A.x1=2,x2=6B.x1=2,x2=﹣6C.x1=﹣2,x2=6D.x1=﹣2,x2=﹣62.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是(  )A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)3.用配方法解方程x2﹣x﹣1=0时,应将其变形为(  )A.(x﹣)2=B.(x+)2=C.(x﹣)2=0D.(x﹣)2=4.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为(  )A.1B.2C.3D.45.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(  )A.68°B.20°C.28°D.22° 6.下列有关圆的一些结论:①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是(  )A.①B.②C.③D.④7.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是(  )A.B.C.D.8.如图,四边形ABCD内接于⊙O,已知∠BCE=70°,则∠A的度数是(  )A.110°B.70°C.55°D.35°9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有(  )个.A.1个B.2个C.3个D.4个 10.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是(  )A.B.5C.D.311.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为(  )A.(,)B.()C.(0,﹣1)D.()12.二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x<0或x>4;③函数解析式为y=﹣x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有(  )A.①②③④B.①②③C.②③④D.①③④二.填空题13.直线与圆在同一平面上做相对运动时,其位置关系有  种,它们分别是  .14.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是  . 15.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为  .16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽  m.17.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为  .18.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是的中点,若扇形的半径为2,则图中阴影部分的面积等于  .三.解答题19.关于x的方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,求k的取值范围. 20.已知一次函数y1=6x,二次函数y2=3x2+3,是否存在二次函数y3=x2+bx+c,其图象经过点(﹣4,1),且对于任意实数x的同一个值,这三个函数对应的函数值y1,y2,y3都有y1≤y2≤y3成立?若存在,求出函数y3的解析式;若不存在,请说明理由.22.如图,点A、B、C均在⊙O上,过点C作⊙O的切线交AB的延长线于点D,∠ACB=45°,∠AOC=150°.(1)求证:CD=CB;(2)⊙O的半径为,求AC的长. 23.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为  米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?24.如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示) 25.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.  参考答案1.故选:C.2.故选:D.3.故选:D.4.故选:C.5.故选:D.6.故选:D.7.故选:B.8.故选:B.9.故选:C.10.故选:A.11.故选:A.12.故选:D.13.答案为:3,相离,相切,相交.14.答案为:(﹣1,2).15.答案为:(﹣,).16.答案为:4.17.答案为:3.18.答案为:2π﹣4.19.解:∵关于x的方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,∴,解得:k>﹣3且k≠1.20.解:不存在这样的实数.设该实数是a.则y1≤y2,即6a≤3a2+3,解得(a﹣1)2≥0,∴a是任意实数,且当a=1时取“=”;当a=1时,y=6,即点(1,6)满足y1≤y2≤y3,将点(1,6)代入二次函数y3=x2+bx+c,得6=1+b+c,① 又∵二次函数y3=x2+bx+c,其图象经过点(﹣4,1),∴1=16﹣4b+c,②由①②解得,b=4,c=1,∴函数y3的解析式为:y=x2+4x+1;∴3a2+3≤a2+4a+1,解得,(a﹣1)2≤0,显而易见,这是错误的,所以点a不适合.所以,不存在这样的任意实数a,使y1≤y2≤y3成立.22.证明:延长AO交⊙O于E点,连接CE∵AE是直径∴∠ACE=90°∵∠ACB=45°∴∠BCE=135°∵AO=OC=EO,∠AOC=150°∴∠OAC=∠OCA=15°,∠OEC=∠OCE=75°∵四边形ABCE是圆内接四边形∴∠EAB+∠ECB=180°,∠E+∠ABC=180°∴∠EAB=45°,∠ABC=105°,∴∠CAD=30°,∠CBD=75°∵CD是⊙O切线,∴∠OCD=90°∵∠OCA=15°,∠ACB=45°∴∠CBD=30°∵∠D+∠CBD+∠BCD=180°∴∠D=75°∴∠D=∠CBD∴CD=CB(2)连接OB,过点B作BF⊥AC于点F, ∵OA=OB∴∠OAB=∠OBA=45°∴∠AOB=90°∴AB==2∵∠CAD=30°,BF⊥AC∴BF=1,AF=BF=∵∠ACB=45°,BF⊥AC∴∠ACB=∠CBF=45°∴CF=BF=1∴AC=+123.】解:(1)由已知饲养场的长为57﹣2a﹣(a﹣1)+2=60﹣3a;故答案为:60﹣3a;(2)由(1)饲养场面积为a(60﹣3a)=288,解得a=12或a=8;当a=8时,60﹣3a=60﹣24=36>27,故a=8舍去,则a=12;(3)设饲养场面积为y,则y=a(60﹣3a)=﹣3a2+60a=﹣3(a﹣10)2+300,∵2<60﹣3a≤27,∴11≤a<,∴当a=11时,y最大=297.24.解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE, ∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设AG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα. 25.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0, ∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料