苏科版数学九年级上册期末模拟试卷09(含答案)
加入VIP免费下载

苏科版数学九年级上册期末模拟试卷09(含答案)

ID:1219647

大小:533.5 KB

页数:31页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
苏科版数学九年级上册期末模拟试卷一、选择题1.从单词“hello”中随机抽取一个字母,抽中l的概率为(  )A.B.C.D.2.一元二次方程x2+x﹣3=0的根的情况是(  )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.若x1,x2是一元二次方程2x2﹣x﹣3=0的两根,则x1+x2的值是(  )A.﹣1B.2C.D.34.如图,在宽为20米,长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽为x米,则下列方程正确的是(  )A.32×20﹣20x﹣30x=540B.32×20﹣20x﹣30x﹣x2=540C.(32﹣x)(20﹣x)=540D.32×20﹣20x﹣30x+2x2=5405.下列说法中,正确的是(  )A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形6.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是(  )x6.176.186.196.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,16),D(0,﹣4),则线段AB的长度为(  )第31页(共31页) A.10B.8C.20D.168.如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则的值为(  )A.B.2C.D.二、填空题9.已知关于x的一元二次方程x2﹣2x+k=0的一个根是3,则另一个根是  .10.二次函数y=x2+5的图象的顶点坐标为  .11.如图,点E是▱ABCD的边AD的中点,BE与AC相交于点P,则S△APE:S△BCP=  .12.弧的半径为24,所对圆心角为60°,则弧长为  .13.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居扬州,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分)60708090100人数4812115则该班学生成绩的中位数是  .14.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=  .第31页(共31页) 15.如图,△ABC中,AE交BC于点D,∠CAE=∠CBE,AD:DE=3:5,AE=16,BD=8,则DC的长等于  .16.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是  .17.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是  m.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为  .三、解答题19.解下列方程:(1)x(x+4)=﹣3(x+4);(2)(2x+1)(x﹣3)=﹣6.第31页(共31页) 20.射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099①乙107101098②9.5(1)完成表中填空①  ;②  ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.21.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之积小于6的概率.第31页(共31页) 22.已知:关于x的一元二次方程x2﹣6x﹣m=0有两个实数根.(1)求m的取值范围;(2)如果m取符合条件的最小整数,且一元二次方程x2﹣6x﹣m=0与x2+nx+1=0有一个相同的根,求常数n的值.23.扬州一农场去年种植水稻10亩,总产量为6000kg,今年该农场扩大了种植面积,并且引进新品种“超级水稻”,使总产量增加到18000kg,已知种植面积的增长率是平均亩产量的增长率的2倍,求平均亩产量的增长率.24.如图,△ABC中,D是BC上一点,∠DAC=∠B,E为AB上一点.(1)求证:△CAD∽△CBA;(2)若BD=10,DC=8,求AC的长;(3)在(2)的条件下,若DE∥AC,AE=4,求BE的长.第31页(共31页) 25.如图,Rt△ABC,∠C=90°,点D为AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE.(1)求证:AE平分∠BAC;(2)若AC=8,OB=18,求BD的长.26.某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)关系为二次函数,部分对应值如表所示.时间x(天)048121620销量y1(万朵)0162424160与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)的函数关系如图所示.(1)求y1与x的二次函数关系式及自变量x的取值范围;(2)求y2与x的函数关系式及自变量x的取值范围;(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.第31页(共31页) 27.如图,正方形ABCD的边长为4,点G、H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E、F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=  ,∠AGH=  °;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.28.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.(1)点A的坐标为  ,线段OB的长=  ;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值. 第31页(共31页) 参考答案一、选择题(本大题共8小题,每题3分,共24分)1.从单词“hello”中随机抽取一个字母,抽中l的概率为(  )A.B.C.D.【考点】概率公式.【分析】hello共有5个字母,l有2个,根据概率公式可得答案.【解答】解:抽中l的概率为,故选:B. 2.一元二次方程x2+x﹣3=0的根的情况是(  )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=12﹣4×(﹣3)=13>0,∴方程有两个不相等的两个实数根.故选A. 3.若x1,x2是一元二次方程2x2﹣x﹣3=0的两根,则x1+x2的值是(  )A.﹣1B.2C.D.3【考点】根与系数的关系.【分析】根据根与系数的关系即可得出x1+x2=,此题得解.【解答】解:∵x1,x2是一元二次方程2x2﹣x﹣3=0的两根,∴x1+x2=,故选C. 第31页(共31页) 4.如图,在宽为20米,长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽为x米,则下列方程正确的是(  )A.32×20﹣20x﹣30x=540B.32×20﹣20x﹣30x﹣x2=540C.(32﹣x)(20﹣x)=540D.32×20﹣20x﹣30x+2x2=540【考点】由实际问题抽象出一元二次方程.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程解答即可.【解答】解:设道路的宽为x,根据题意得(32﹣x)(20﹣x)=540,故选C 5.下列说法中,正确的是(  )A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形【考点】确定圆的条件.【分析】根据确定圆的条件逐一判断后即可得到答案.【解答】解:A、不在同一直线上的三点确定一个圆,故原命题错误;B、三角形有且只有一个外切圆,原命题正确;C、并不是所有的四边形都有一个外接圆,原命题错误;D、圆有无数个内接三角形.故选B. 6.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是(  )x6.176.186.196.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20第31页(共31页) 【考点】图象法求一元二次方程的近似根.【分析】观察表格可知,y随x的值逐渐增大,ax2+bx+c的值在6.18~6.19之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在6.18~6.19之间.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选C. 7.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,16),D(0,﹣4),则线段AB的长度为(  )A.10B.8C.20D.16【考点】垂径定理;坐标与图形性质;勾股定理.【分析】连接半径AE,利用勾股定理求OA的长,再由垂径定理求AB.【解答】解:连接AE,∵AE=10,OE=ED﹣OD=10﹣4=6,由勾股定理得:OA=8,∵OE⊥AB,∴AB=2OA=2×8=16,故选D. 第31页(共31页) 8.如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则的值为(  )A.B.2C.D.【考点】二次函数综合题.【分析】根据Ai的纵坐标与Bi纵坐标的绝对值之和为AiBi的长,分别表示出所求式子的各项,拆项后抵消即可得到结果.【解答】解:根据题意得:AiBi=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A 二、填空题(本大题共10小题,每小题3分,共30分)9.已知关于x的一元二次方程x2﹣2x+k=0的一个根是3,则另一个根是 ﹣1 .【考点】根与系数的关系.【分析】把方程的一个根3代入方程得到关于k的方程,解方程求出k的值.根据根与系数的关系,由两根之和可以求出方程的另一个根.【解答】解:把方程的一个根3代入方程有:9﹣6+k=0,解得k=﹣3;设方程的另一个根是x1,则:3+x1=2,解得x1=﹣1.第31页(共31页) 即另一个根是﹣1.故答案为:﹣1. 10.二次函数y=x2+5的图象的顶点坐标为 (0,5) .【考点】二次函数的性质.【分析】根据二次函数的性质找出二次函数的顶点坐标(﹣,),代入数据即可得出结论.【解答】解:∵在二次函数y=x2+5中,a=1,b=0,c=5,∴该二次函数的顶点坐标为(﹣,),即(0,5).故答案为:(0,5). 11.如图,点E是▱ABCD的边AD的中点,BE与AC相交于点P,则S△APE:S△BCP= 1:4 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的性质可知AE∥BC,可证△AEP∽△CBP,相似比为AE:BC=1:2,则相似三角形的面积之比等于相似比的平方.【解答】解:如图,∵点E是▱ABCD的边AD的中点,∴=.∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴△AEP∽△CBP,∵==,∴S△APE:S△BCP=1:4.第31页(共31页) 故答案是:1:4. 12.弧的半径为24,所对圆心角为60°,则弧长为 8π .【考点】弧长的计算.【分析】直接利用弧长公式得出即可.【解答】解:∵弧的半径为24,所对圆心角为60°,∴弧长为l==8π.故答案为:8π. 13.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居扬州,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分)60708090100人数4812115则该班学生成绩的中位数是 80 .【考点】中位数;统计表.【分析】根据统计图可得共有40个数,则这40名学生成绩的中位数是第20、21个数的平均数,然后列式计算即可.【解答】解;根据统计图可得:∵共有40个数,∴这40名学生成绩的中位数是(80+80)÷2=80,故答案为:80. 14.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E= 50° .第31页(共31页) 【考点】切线的性质.【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【解答】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=40°,∴∠E=90°﹣∠COB=50°.故答案为:50°. 15.如图,△ABC中,AE交BC于点D,∠CAE=∠CBE,AD:DE=3:5,AE=16,BD=8,则DC的长等于  .【考点】相似三角形的判定与性质.【分析】证明三角形相似得出比例式,即可解决问题.【解答】解:∵AD:DE=3:5,AE=16,第31页(共31页) ∴DE=10,AD=6,∵∠CAE=∠CBE,∠ADC=∠BDE,∴△ADC∽△BDE,∴,∴,解得:DE=;故答案为:, 16.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是 5 .【考点】三角形中位线定理;圆周角定理.【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图所示,∵∠ACB=∠D=45°,AB=10,∠ABD=90°,∴AD=AB=10,∴MN=AD=5,故答案为:5.第31页(共31页)  17.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是 3 m.【考点】二次函数的应用.【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(3,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【解答】解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3. 18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(第31页(共31页) ,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为 2﹣2 .【考点】点与圆的位置关系;坐标与图形性质;垂径定理;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2. 三、解答题(本大题共10小题,共96分.把解答过程写在答题纸相对应的位置上)19.解下列方程:(1)x(x+4)=﹣3(x+4);第31页(共31页) (2)(2x+1)(x﹣3)=﹣6.【考点】解一元二次方程-因式分解法.【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x(x+4)=﹣3(x+4),x(x+4)+3(x+4)=0,(x+4)(x+3)=0,x+4=0,x+3=0,x1=﹣4,x2=﹣3;(2)(2x+1)(x﹣3)=﹣6,整理得:2x2﹣5x+3=0,(2x﹣3)(x﹣1)=0,2x﹣3=0,x﹣1=0,x1=,x2=1. 20.射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099①乙107101098②9.5(1)完成表中填空① 9 ;② 9 ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.【考点】方差;算术平均数.【分析】(1)根据中位数的定义先把这组数据从小到大排列,再找出最中间两个数的平均数即可求出①;根据平均数的计算公式即可求出②;第31页(共31页) (2)根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]代值计算即可;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.【解答】解:(1)甲的中位数是:=9;乙的平均数是:(10+7+10+10+9+8)÷6=9;故答案为:9,9;(2)S甲2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=;(3)∵=,S甲2<S乙2,∴推荐甲参加比赛合适. 21.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之积小于6的概率.【考点】列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再执找出两个转盘停止后指针所指区域内的数字之积小于6的结果数,然后根据概率公式求解.【解答】解:画树状图为:第31页(共31页) 共有12种等可能的结果数,其中两个转盘停止后指针所指区域内的数字之积小于6的结果数为7,所以两个转盘停止后指针所指区域内的数字之积小于6的概率=. 22.已知:关于x的一元二次方程x2﹣6x﹣m=0有两个实数根.(1)求m的取值范围;(2)如果m取符合条件的最小整数,且一元二次方程x2﹣6x﹣m=0与x2+nx+1=0有一个相同的根,求常数n的值.【考点】根的判别式.【分析】(1)根据判别式的意义得到△=(﹣6)2﹣4×1×(﹣m)≥0,然后解不等式即可得到m的范围;(2)在(1)中m的取值范围内确定满足条件的m的值,再解方程x2﹣6x﹣m=0,然后把它的解代入x2+nx+1=0可计算出n的值.【解答】解:(1)根据题意得△=(﹣6)2﹣4×1×(﹣m)≥0,解得m≥﹣9;(2)∵m≥﹣9,∴m的最小整数为﹣9,此时方程变形为x2﹣6x+9=0,解得x1=x2=3,把x=3代入x2+nx+1=0得9+3n+1=0,解得n=﹣. 23.扬州一农场去年种植水稻10亩,总产量为6000kg,今年该农场扩大了种植面积,并且引进新品种“超级水稻”,使总产量增加到18000kg,已知种植面积的增长率是平均亩产量的增长率的2倍,求平均亩产量的增长率.【考点】一元二次方程的应用.【分析】设平均亩产量的增长率为x,则种植面积的增长率是2x,根据总产量=种植面积×平均亩产量即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设平均亩产量的增长率为x,则种植面积的增长率是2x,根据题意得:10×(1+2x)××(1+x)=18000,第31页(共31页) 解得:x1=50%,x2=﹣200%(舍去).答:平均亩产量的增长率为50%. 24.如图,△ABC中,D是BC上一点,∠DAC=∠B,E为AB上一点.(1)求证:△CAD∽△CBA;(2)若BD=10,DC=8,求AC的长;(3)在(2)的条件下,若DE∥AC,AE=4,求BE的长.【考点】相似形综合题;平行线分线段成比例;相似三角形的判定与性质.【分析】(1)有两组角对应相等的两个三角形相似,据此判断△CAD∽△CBA即可;(2)根据相似三角形的对应边成比例,得出AC2=CD×CB,再根据BD=10,DC=8,求得AC的长即可;(3)根据平行线分线段成比例定理,由DE∥AC,得出=,再根据BD=10,DC=8,AE=4,求得BE=5即可.【解答】解:(1)∵在△CAD和△CBA中,∠DAC=∠B,∠ACD=∠BCA,∴△CAD∽△CBA;(2)∵△CAD∽△CBA,∴=,即AC2=CD×CB,又∵BD=10,DC=8,∴AC2=8×18=144,∴AC=±12,又∵AC>0,∴AC=12;第31页(共31页) (3)∵DE∥AC,∴=,又∵BD=10,DC=8,AE=4,∴=,∴BE=5. 25.如图,Rt△ABC,∠C=90°,点D为AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE.(1)求证:AE平分∠BAC;(2)若AC=8,OB=18,求BD的长.【考点】切线的性质.【分析】(1)如图,连接OE.首先证明AC∥OE,推出∠CAE=∠AEO,由OA=OE,推出∠AEO=∠OAE=∠CAE即可证明.(2)设OE=OA=OD=r,由OE∥AC,得=,即=,解方程即可.【解答】(1)证明:如图,连接OE.∵BC是⊙O切线,第31页(共31页) ∴OE⊥BC,∴∠OEB=90°,∵∠C=90°,∴∠C=∠OEB=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠AEO=∠OAE=∠CAE,∴AE平分∠CAB.(2)解:设OE=OA=OD=r,∵OE∥AC,∴=,∴=,∴r=6(负根已经舍弃)∴BD=OB﹣OD=18﹣6=12. 26.某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)关系为二次函数,部分对应值如表所示.时间x(天)048121620销量y1(万朵)0162424160与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)的函数关系如图所示.(1)求y1与x的二次函数关系式及自变量x的取值范围;(2)求y2与x的函数关系式及自变量x的取值范围;(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.第31页(共31页) 【考点】二次函数的应用.【分析】(1)根据题意可以得到y1与x的二次函数关系式及自变量x的取值范围;(2)根据题意和函数图象可以得到y2与x的函数关系式及自变量x的取值范围;(3)根据(1)和(2)中的结果可以得到y与时间x的函数关系式,然后化为顶点式,从而可以解答本题.【解答】解:(1)设y1与x的函数关系式为y1=ax2+bx+c,,解得,,即y1与x的函数关系式为y1=﹣x2+5x(0≤x≤20);(2)设当0≤x≤8时,y2=kx,则4=8k,得k=,即当0≤x≤8时,y=,设当8<x≤208时,y2=ax+b,,得,即当8<x≤20时,y=x﹣4,由上可得,y2与x的函数关系式是y2=;第31页(共31页) (3)由题意可得,当8≤x≤20时,y=﹣x2+5x+x﹣4=,∴x=12时,y取得最大值,此时y=32,即当8≤x≤20时,第12天日销售总量y最大,此时的最大值是32万朵. 27.如图,正方形ABCD的边长为4,点G、H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E、F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF= 1:3 ,∠AGH= 90 °;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.【考点】相似形综合题;二次函数的最值;勾股定理的逆定理;相似三角形的判定与性质.【分析】(1)根据正方形ABCD的边长为4,BG=2,DH=3,可得CG=2,CH=1,再根据DF∥CG,得出△FDH∽△GCH,根据相似三角形的性质可得GH:HF的值,最后根据勾股定理的逆定理,判定△AGH是直角三角形,且∠AGH=90°即可;(2)根据正方形ABCD的边长为4,BG=3,DH=1,得出CG=1,CH=3,再根据CG∥DF,CH∥BE,可得△CGH∽△BGE∽△DFH,最后根据相似三角形的性质以及勾股定理,求得DF、EG的长;(3)根据正方形ABCD的边长为4,BG=x,DH=y,得出CG=4﹣x,CH=4﹣y,由(1)可得,△FDH∽△GCH,而△ABG∽△FDH,进而得出△ABG∽△GCH,根据相似三角形的对应边成比例,可得y与x之间的函数关系式为:y=x2﹣x+4,最后运用二次函数的性质求得3≤y<4即可.第31页(共31页) 【解答】解:(1)∵正方形ABCD的边长为4,BG=2,DH=3,∴CG=2,CH=1,∵DF∥CG,∴△FDH∽△GCH,∴==,∵Rt△GCH中,GH2=CG2+CH2=5,Rt△ABG中,AG2=AB2+BG2=20,Rt△ADH中,AH2=AD2+DH2=25,∴GH2+AG2=AH2,∴△AGH是直角三角形,且∠AGH=90°.故答案为:1:3,90;(2)∵正方形ABCD的边长为4,BG=3,DH=1,∴CG=1,CH=3,∵CG∥DF,CH∥BE,∴△CGH∽△BGE∽△DFH,∴==,即==,解得BE=9,DF=,∴Rt△BEG中,EG===3;(3)∵正方形ABCD的边长为4,BG=x,DH=y,∴CG=4﹣x,CH=4﹣y,由(1)可得,△FDH∽△GCH,而△ABG∽△FDH,∴△ABG∽△GCH,∴=,即=,∴y与x之间的函数关系式为:y=x2﹣x+4,∵=,第31页(共31页) ∴4﹣y==﹣+x,∴当x=﹣=2时,4﹣y有最大值,且最大值为﹣×4+2=1,∴0<4﹣y≤1,解得3≤y<4. 28.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.(1)点A的坐标为 (4,0) ,线段OB的长= 5 ;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.【考点】二次函数综合题;两点间的距离公式;抛物线与x轴的交点;平行四边形的判定与性质.【分析】(1)根据y=x2﹣4x中,令y=0,则0=x2﹣4x,可求得A(4,0),解方程组,可得B(5,5),进而得出OB的长;(2)①根据C(m,m),F(m,m2﹣4m),可得CF=m﹣(m+),根据D(m+第31页(共31页) ,m+),E(m+,(m+)2﹣4(m+)),可得DE=m+﹣[(m+)2﹣4(m+)],最后根据当四边形CDEF是平行四边形时,CF=DE,求得m的值即可;②先过点A作CD的平行线,过点D作AC的平行线,交于点G,则四边形ACDG是平行四边形,得出AC=DG,再作点A关于直线OB的对称点A',连接A'D,则A'D=AD,根据当A',D,G三点共线时,A'D+DG=A'G最短,可得此时AC+AD最短,然后求得直线A'G的解析式为y=﹣x+4,解方程组可得D(2+,2+),C(2﹣,2﹣),最后根据两点间距离公式,求得△ACD的周长的最小值.【解答】解:(1)∵y=x2﹣4x中,令y=0,则0=x2﹣4x,解得x1=0,x2=4,∴A(4,0),解方程组,可得或,∴B(5,5),∴OB==5.故答案为:(4,0),5;(2)①∵点C的横坐标为m,且CF∥DE∥y轴,∴C(m,m),F(m,m2﹣4m),又∵CD=2,且CD是线段OB上的一动线段,∴D(m+,m+),E(m+,(m+)2﹣4(m+)),∴CF=m﹣(m+),DE=m+﹣[(m+)2﹣4(m+)],∵当四边形CDEF是平行四边形时,CF=DE,∴m﹣(m+)=m+﹣[(m+)2﹣4(m+)],解得m=;第31页(共31页) ②如图所示,过点A作CD的平行线,过点D作AC的平行线,交于点G,则四边形ACDG是平行四边形,∴AC=DG,作点A关于直线OB的对称点A',连接A'D,则A'D=AD,∴当A',D,G三点共线时,A'D+DG=A'G最短,此时AC+AD最短,∵A(4,0),AG=CD=2,∴A'(0,4),G(4+,),设直线A'G的解析式为y=kx+b,则,解得,∴直线A'G的解析式为y=﹣x+4,解方程组,可得,∴D(2+,2+),∵CD=2,且CD是线段OB上的一动线段,∴C(2﹣,2﹣),∴点C的横坐标m=2﹣,由A(4,0),C(2﹣,2﹣)可得,AC==3,由A(4,0),D(2+,2+)可得,AD==3,又∵CD=2,∴△ACD的周长=CD+AC+AD=2+3+3=8,故当m=2﹣时,△ACD的周长最小,这个最小值为8.第31页(共31页)  第31页(共31页) 2017年2月20日第31页(共31页)

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料