苏科版数学九年级上册期末模拟试卷13(含答案)
加入VIP免费下载

苏科版数学九年级上册期末模拟试卷13(含答案)

ID:1219655

大小:395 KB

页数:21页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
苏科版数学九年级上册期末模拟试卷一、选择题1.美美专卖店专营某品牌的衬衫,店主对上一周不同尺码的衬衫销售情况统计如下:尺码3940414243平均每天销售数量(件)1012201212该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是(  )A.平均数B.众数C.方差D.中位数2.如图,是小明的练习,则他的得分是(  )A.0分B.2分C.4分D.6分3.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为(  )A.1:3B.1:4C.1:5D.1:94.在△ABC中,∠C=90°,AC=1,BC=2,则cosA的值是(  )A.B.C.D.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为(  )A.36πcm2B.48πcm2C.60πcm2D.80πcm26.已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是(  )A.﹣3B.﹣2C.3D.6 7.半径为r的圆的内接正三角形的边长是(  )A.2rB.C.D.8.如图,在△ABC中,∠B=60°,BA=3,BC=5,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(  )A.B.C.D.二、填空题9.tan60°=  .10.已知,则xy=  .11.一组数据6,2,﹣1,5的极差为  .12.如图,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是  .13.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=  °.14.某超市今年l月份的销售额是2万元,3月份的销售额是2.88万元,从1月份到3月份,该超市销售额平均每月的增长率是  .15.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有  . 16.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为  .三、解答题17.(1)解方程:x(x+3)=﹣2;(2)计算:sin45°+3cos60°﹣4tan45°.18.体育老师对九年级甲、乙两个班级各10名女生“立定跳远”项目进行了检测,两班成绩如下:甲班13111012111313121312乙班1213131311136131313(1)分别计算两个班女生“立定跳远”项目的平均成绩;(2)哪个班的成绩比较整齐? 19.校园歌手大赛中甲乙丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.20.如图,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上△ABC和△DEF相似吗?为什么?21.已知关于x的方程(x﹣1)(x﹣4)=k2,k是实数.(1)求证:方程有两个不相等的实数根:(2)当k的值取  时,方程有整数解.(直接写出3个k的值) 22.如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB的高度.23.如图,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EF在AB上.(1)求证:△AED∽△DCG;(2)若矩形DEFG的面积为4,求AE的长. 24.如图,AB为⊙O的直径,点E在⊙O,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由(2)若AD=2,AC=,求⊙O的半径.25.如图,平面直角坐标系中有4个点:A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).(1)在正方形网格中画出△ABC的外接圆⊙M,圆心M的坐标是  ;(2)若EF是⊙M的一条长为4的弦,点G为弦EF的中点,求DG的最大值;(3)点P在直线MB上,若⊙M上存在一点Q,使得P、Q两点间距离小于1,直接写出点P横坐标的取值范围.  参考答案一、选择题1.美美专卖店专营某品牌的衬衫,店主对上一周不同尺码的衬衫销售情况统计如下:尺码3940414243平均每天销售数量(件)1012201212该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是(  )A.平均数B.众数C.方差D.中位数【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:B. 2.如图,是小明的练习,则他的得分是(  )A.0分B.2分C.4分D.6分【解答】解:(1)x2=1,∴x=±1,∴方程x2=1的解为±1,所以(1)错误;(2)sin30°=0.5,所以(2)正确;(3)等圆的半径相等,所以(3)正确;这三道题,小亮答对2道,得分:2×2=(4分).故选:C. 3.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为(  ) A.1:3B.1:4C.1:5D.1:9【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选:D. 4.在△ABC中,∠C=90°,AC=1,BC=2,则cosA的值是(  )A.B.C.D.【解答】解:在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB===,∴cosA===,故选:C. 5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为(  )A.36πcm2B.48πcm2C.60πcm2D.80πcm2【解答】解:由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π, ∴圆锥的侧面积为:×12π×10=60π.故选:C. 6.已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是(  )A.﹣3B.﹣2C.3D.6【解答】解:设方程的另一个根为t,根据题意得2+t=﹣1,解得t=﹣3,即方程的另一个根是﹣3.故选:A. 7.半径为r的圆的内接正三角形的边长是(  )A.2rB.C.D.【解答】解:如图所示,OB=OA=r;,∵△ABC是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO是∠ABC的平分线;∠OBD=60°×=30°,BD=r•cos30°=r•;根据垂径定理,BC=2×r=r.故选:B. 8.如图,在△ABC中,∠B=60°,BA=3,BC=5,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(  ) A.B.C.D.【解答】解:A.阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B.阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C.两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D.两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选:D. 二、填空题(共8小题,每小题2分,满分16分)9.tan60°=  .【解答】解:tan60°的值为.故答案为:. 10.已知,则xy= 6 .【解答】解:∵=,∴xy=6.故答案为:6. 11.一组数据6,2,﹣1,5的极差为 7 . 【解答】解:极差=6﹣(﹣1)=7.故答案为7. 12.如图,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是  .【解答】解:指针停止后指向图中阴影的概率是:=;故答案为:. 13.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58 °.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OBA=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.  14.某超市今年l月份的销售额是2万元,3月份的销售额是2.88万元,从1月份到3月份,该超市销售额平均每月的增长率是 20% .【解答】解:设该超市销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该超市销售额平均每月的增长率是20%.故答案为:20%. 15.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有 ①②③④ .【解答】解:∵∠A=90°,AD⊥BC,∴∠α+∠β=90°,∠B+∠β=90°,∠B+∠C=90°,∴∠α=∠B,∠β=∠C,∴sinα=sinB,故①正确;sinβ=sinC,故②正确;∵在Rt△ABC中sinB=,cosC=,∴sinB=cosC,故③正确;∵sinα=sinB,cos∠β=cosC,∴sinα=cos∠β,故④正确;故答案为①②③④. 16.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△ AOB的一条边所在直线相切时,点P的坐标为 (0,2),(﹣1,0),(﹣,1) .【解答】解:∵点A、B的坐标分别是(0,2)、(4,0),∴直线AB的解析式为y=﹣x+2,∵点P是直线y=2x+2上的一动点,∴两直线互相垂直,即PA⊥AB,且C(﹣1,0),当圆P与边AB相切时,PA=PO,∴PA=PC,即P为AC的中点,∴P(﹣,1);当圆P与边AO相切时,PO⊥AO,即P点在x轴上,∴P点与C重合,坐标为(﹣1,0);当圆P与边BO相切时,PO⊥BO,即P点在y轴上,∴P点与A重合,坐标为(0,2);故符合条件的P点坐标为(0,2),(﹣1,0),(﹣,1),故答案为(0,2),(﹣1,0),(﹣,1). 三、解答题(共9小题,满分68分)17.(8分)(1)解方程:x(x+3)=﹣2;(2)计算:sin45°+3cos60°﹣4tan45°.【解答】解:(1)方程整理,得x2+3x+2=0,因式分解,得(x+2)(x+1)=0,于是,得x+2=0,x+1=0, 解得x1=﹣2,x2=﹣1;(2)原式=×+3×﹣4×1=1+1.5﹣4=﹣1.5. 18.(8分)体育老师对九年级甲、乙两个班级各10名女生“立定跳远”项目进行了检测,两班成绩如下:甲班13111012111313121312乙班1213131311136131313(1)分别计算两个班女生“立定跳远”项目的平均成绩;(2)哪个班的成绩比较整齐?【解答】解:(1)=(13+11+10+12+11+13+13+12+13+12)=12(分),=(12+13+13+13+11+13+6+13+13+13)=12(分).故两个班女生“立定跳远”项目的平均成绩均为12分;(2)S甲2=×[4×(13﹣12)2+3×(12﹣12)2+2×(11﹣12)2+(10﹣12)2]=1.2,S乙2=×[7×(13﹣12)2+(12﹣12)2+(11﹣12)2+(6﹣12)2]=4.4,∵S甲2<S乙2,∴甲班的成绩比较整齐. 19.(8分)校园歌手大赛中甲乙丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【解答】解:(1)∵甲、乙、丙三位学生进入决赛,∴P(甲第一位出场)=; (2)画出树状图得:∵共有6种等可能的结果,甲比乙先出场的有3种情况,∴P(甲比乙先出场)==. 20.(6分)如图,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上△ABC和△DEF相似吗?为什么?【解答】解:△ABC和△DEF相似.理由如下:由勾股定理,得AB=2,AC=2,BC=2,DE=,DF=,EF=2,∵=,==,==,∴===,∴△ABC∽△DEF. 21.(6分)已知关于x的方程(x﹣1)(x﹣4)=k2,k是实数.(1)求证:方程有两个不相等的实数根:(2)当k的值取 ﹣2、0、2 时,方程有整数解.(直接写出3个k的值)【解答】(1)证明:原方程可变形为x2﹣5x+4﹣k2=0.∵△=(﹣5)2﹣4×1×(4﹣k2)=4k2+9>0,∴不论k为任何实数,方程总有两个不相等的实数根;(2)解:原方程可化为x2﹣5x+4﹣k2=0. ∵方程有整数解,∴x=为整数,[来源:Z.Com]∴k取0,2,﹣2时,方程有整数解. 22.(6分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB的高度.【解答】解:设AG=x.在Rt△AFG中,∵tan∠AFG=,∴FG=,在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴x﹣=10,解得:x=15+5,∴AB=15+5+1=16+5.答:电视塔的高度AB约为(16+5)米.  23.(8分)如图,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EF在AB上.(1)求证:△AED∽△DCG;(2)若矩形DEFG的面积为4,求AE的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠AED=∠DEF=90°,DG∥AB,∴∠CDG=∠A,∵∠C=90°,∴∠AED=∠C,∴△AED∽△DCG;(2)解:设AE的长为x,∵等腰Rt△ABC中,∠C=90°,AC=4,∴∠A=∠B=45°,AB=4,∵矩形DEFG的面积为4,∴DE•FE=4,∠AED=∠DEF=∠BFG=90°,∴BF=FG=DE=AE=x, ∴EF=4﹣2x,即x(4﹣2x)=4,解得x1=x2=.∴AE的长为. 24.(8分)如图,AB为⊙O的直径,点E在⊙O,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由(2)若AD=2,AC=,求⊙O的半径.【解答】解:(1)相切,连接OC,∵C为的中点,[来源:学.科.网]∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;(2)连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴CD2=AD•DE, ∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==3.∴⊙O的半径为1.5. 25.(10分)如图,平面直角坐标系中有4个点:A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).(1)在正方形网格中画出△ABC的外接圆⊙M,圆心M的坐标是 (﹣1,0) ;(2)若EF是⊙M的一条长为4的弦,点G为弦EF的中点,求DG的最大值;(3)点P在直线MB上,若⊙M上存在一点Q,使得P、Q两点间距离小于1,直接写出点P横坐标的取值范围.【解答】解:(1)如图所示;M(﹣1,0);故答案为(﹣1,0). (2)连接MD,MG,ME,∵点G为弦EF的中点,EM=FM=,∴MG⊥EF,∵EF=4,∴EG=FG=2,∴MG=1,∴点G在以M为圆心,1为半径的圆上,∴当点G在线段DM延长线上时DG最大,此时DG=DM+GM,∵DM==5,∴DG的最大值为5+1=6;(3)设P点的横坐标为x,当P点位于线段MB及延长线上且P、Q两点间距离等于1,时,=,∴=或=解得|xp|=2+或2﹣,∵此时P点在第三象限,∴x<0,∴x=﹣2﹣或﹣2+, 即当P、Q两点间距离小于1时点P横坐标的取值范围为﹣2﹣<x<﹣2+;当P点位于线段BM及延长线上且P、Q两点间距离等于1时,则PQ:AM=|x|:|xM|,=,解得|x|=,∵此时P点在第一或二象限,∴x=±,即当P、Q两点间距离小于1时点P横坐标的取值范围为﹣<x;综上所述,点P横坐标的取值范围为﹣<x或﹣2﹣<x<﹣2+; 

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料