苏科版数学八年级上册月考复习试卷12(含答案)
加入VIP免费下载

苏科版数学八年级上册月考复习试卷12(含答案)

ID:1219860

大小:340.5 KB

页数:28页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
苏科版数学八年级上册月考复习试卷一、选择题1.以下列各组线段为边能组成三角形的是(  )A.1cm,2cm,4cmB.2cm,3cm,5cmC.4cm,6cm,8cmD.5cm,6cm,12cm2.一个等腰三角形的两边长分别为3和5,则它的周长为(  )A.11B.12C.13D.11或133.八边形的对角线共有(  )A.8条B.16条C.18条D.20条4.三角形的角平分线、中线和高(  )A.都是线段B.都是射线C.都是直线D.不都是线段5.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有(  )A.1个B.2个C.3个D.4个6.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是(  )A.B.C.D.7.使两个直角三角形全等的条件是(  )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(  )第28页(共28页) A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA9.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是(  )A.20°B.30°C.40°D.50°10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有(  )A.4个B.3个C.2个D.1个二.填空题11.盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有  的原理.12.在△ABC中,AB=6,AC=4,则BC边上的中线AD的取值范围是  .13.一个多边形的每个外角都是60°,则这个多边形边数为  .14.如图,∠A+∠B+∠C+∠D+∠E+∠F=  度.第28页(共28页) 15.点O是△ABC内一点,且点O到三边的距离相等,∠A=70°,则∠BOC的度数为  .16.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形  对.17.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是  (只添一个条件即可).18.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为  .三.解答题19.如图所示,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、CE的交点,求∠BHC的度数.第28页(共28页) 20.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).22.如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.23.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.第28页(共28页) 24.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.25.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,(1)证明AE=AF;(2)若△ABC面积是36cm2,AB=10cm,AC=8cm,求DE的长.26.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.说明:(1)CD=EB;(2)AB=AF+2EB.第28页(共28页) 27.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:AE+CD=AC;(3)求证:OE=OD.28.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A.C.D能构成周长为30cm的三角形,求出木条AD,BC的长度. 第28页(共28页) 参考答案一、选择题(10小题,每小题3分,共30分)1.以下列各组线段为边能组成三角形的是(  )A.1cm,2cm,4cmB.2cm,3cm,5cmC.4cm,6cm,8cmD.5cm,6cm,12cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、1+2<4,不能组成三角形,故此选项错误;B、2+3=5,不能组成三角形,故此选项错误;C、6+4>8,能组成三角形,故此选项正确;D、5+6<12,不能组成三角形,故此选项错误;故选:C. 2.一个等腰三角形的两边长分别为3和5,则它的周长为(  )A.11B.12C.13D.11或13【考点】等腰三角形的性质;三角形三边关系.【分析】由等腰三角形两边长为3、5,分别从等腰三角形的腰长为3或5去分析即可求得答案,注意分析能否组成三角形.【解答】解:①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=13,综上所述,它的周长是:11或13.故选D. 第28页(共28页) 3.八边形的对角线共有(  )A.8条B.16条C.18条D.20条【考点】多边形的对角线.【分析】多边形的对角线条数=.【解答】解:八边形的对角线==20.故选:D. 4.三角形的角平分线、中线和高(  )A.都是线段B.都是射线C.都是直线D.不都是线段【考点】三角形的角平分线、中线和高.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.【解答】解:三角形的角平分线、中线和高都是线段.故选(A) 5.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有(  )A.1个B.2个C.3个D.4个【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形.强调能够完全重合,对选择项进行验证可得答案.【解答】解:①周长相等的两个图形不一定重合,所以不一定全等;②如果面积相同而形状不同也不全等;③如果周长相同面积相同而形状不同,则不全等,④两个图形的形状相同,大小也相等,则二者一定重合,正确.所以只有1个正确,故选A.第28页(共28页)  6.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是(  )A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B. 7.使两个直角三角形全等的条件是(  )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【考点】直角三角形全等的判定.【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;第28页(共28页) C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D. 8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(  )A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,第28页(共28页) ∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D. 9.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是(  )A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,第28页(共28页) ∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A. 10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有(  )A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,第28页(共28页) ∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A. 二.填空题(8小题,每小题3分,共24分)11.盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有 稳定性 的原理.【考点】三角形的稳定性.【分析】在窗框上斜钉一根木条,构成三角形,故可用三角形的稳定性解释.【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故答案为:稳定性. 12.在△ABC中,AB=6,AC=4,则BC边上的中线AD的取值范围是 1<AD<5 .【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=8,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,第28页(共28页) ,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5. 13.一个多边形的每个外角都是60°,则这个多边形边数为 6 .【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6. 14.如图,∠A+∠B+∠C+∠D+∠E+∠F= 360 度.【考点】三角形内角和定理.【分析】利用三角形外角性质可得∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,三式相加易得∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,而∠第28页(共28页) AHG、∠DNG、∠EGN是△GHN的三个不同的外角,从而可求∠A+∠B+∠C+∠D+∠E+∠F.【解答】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°. 15.点O是△ABC内一点,且点O到三边的距离相等,∠A=70°,则∠BOC的度数为 125° .【考点】角平分线的性质.【分析】根据角平分线的逆定理求出O是三角形的角平分线的交点,再利用三角形内角和等于180度求解.【解答】解:连接OA,OB,OC,∵点O是△ABC内一点,且点O到三边的距离相等,∴OA、OB、OC分别平分∠BAC、∠ABC、∠ACB,∵∠BAC=70°,∴∠ABC+∠ACB=110°,∴∠OBC+∠OCB=110°÷2=55°,∴∠BOC=180°﹣55°=125°.故答案为:125°.第28页(共28页)  16.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形 4 对.【考点】全等三角形的判定.【分析】本题重点是根据已知条件“AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点”,得出△ABD≌△ACD,然后再由结论推出AB=AC,BE=DE,CF=DF,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AD⊥BC,AB=AC∴D是BC中点∴BD=DC,∵AD=AD,∴△ABD≌△ACD(SSS);E、F分别是DB、DC的中点∴BE=ED=DF=FC∵AD⊥BC,AD=AD,ED=DF∴△ADF≌△ADE(HL);∵∠B=∠C,BE=FC,AB=AC∴△ABE≌△ACF(SAS)∵EC=BF,AB=AC,AE=AF∴△ABF≌△ACE(SSS).∴全等三角形共4对,分别是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE(SSS),△ABF≌△ACE(SAS).故答案为4.第28页(共28页)  17.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是 CD=BD (只添一个条件即可).【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD. 18.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为 (3,4)或(,)或(﹣,) .【考点】全等三角形的判定;坐标与图形性质.【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△第28页(共28页) AOB和△APB全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,).第28页(共28页) 故答案为:(3,4)或(,)或(﹣,). 三.解答题(10小题,共96分)19.如图所示,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、CE的交点,求∠BHC的度数.【考点】多边形内角与外角.【分析】根据高的定义得∠ADB=∠AEC=90°,于是利用四边形内角和为360°可计算出∠EHD,然后根据对顶角相等得到∠BHC的度数.【解答】解:∵BD、CE分别是△ABC边AC、AB上的高,∴∠ADB=∠AEC=90°,而∠A+∠AEH+∠ADH+∠EHD=360°,∴∠EHD=180°﹣60°=120°,∴∠BHC=120°. 20.一个多边形的外角和是内角和的,求这个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的外角和是内角和的第28页(共28页) ,任何多边形的外角和是360°,因而多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9. 21.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).【考点】三角形三边关系.【分析】根据三角形的三边关系就可以证出.【解答】证明:在△ABP中:AP+BP>AB.同理:BP+PC>BC,AP+PC>AC.以上三式分别相加得到:2(PA+PB+PC)>AB+BC+AC,即PA+PB+PC>(AB+BC+AC). 22.如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.【考点】全等三角形的判定与性质.【分析】要证AB=CD,需证△ABC≌△DCB,由已知根据ASA可证△ABC≌△DCB.【解答】解:AB=CD,理由如下:∵∠1=∠2,∠3=∠4,第28页(共28页) ∴∠1+∠3=∠2+∠4.∴∠ABC=∠DCB.又∵BC=CB,∠3=∠4,∴△ABC≌△DCB(ASA).∴AB=CD. 23.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.【考点】直角三角形全等的判定;全等三角形的性质.【分析】由题中AB=AC,以及AB和AC所在三角形为直角三角形,可以判断出应证明△ABD≌△CAE.【解答】证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.第28页(共28页)  24.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)先证明BC=EF,再根据SSS即可证明.(2)结论AB∥DE,AC∥DF,根据全等三角形的性质即可证明.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.第28页(共28页)  25.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,(1)证明AE=AF;(2)若△ABC面积是36cm2,AB=10cm,AC=8cm,求DE的长.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)由在△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,易证得∠ADE=∠ADF,然后由角平分线的性质,可证得AE=AF;(2)由在△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,可证得DE=DF,又由S△ABC=S△ADB+S△ACD=AB•DE+AC•DF,即可求得DE的长.【解答】(1)证明:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴∠EAD=∠FAD,∠AED=∠AFD=90°,∴∠ADE=∠ADF,∴AE=AF;(2)解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是36cm2,AB=10cm,AC=8cm,∴S△ABC=S△ADB+S△ACD=AB•DE+AC•DF=DE•(AB+AC)=×DE×(10+8)=9DE=36,第28页(共28页) ∴DE=4(cm). 26.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.说明:(1)CD=EB;(2)AB=AF+2EB.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)由AD为角平分线,利用角平分线定理得到DE=DC,再由BD=DF,利用HL得到三角形FCD与三角形BDF全等,利用全等三角形对应边相等即可得证;(2)利用AAS得到三角形ACD与三角形AED全等,利用全等三角形对应边相等得到AC=AE,由AB=AE+EB,等量代换即可得证.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CFD和Rt△EBD中,,∴Rt△CFD≌Rt△EBD(HL),∴CD=EB;(2)在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AC=AE,∴AB=AE+EB=AC+EB=AF+FC+EB=AF+2EB. 第28页(共28页) 27.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:AE+CD=AC;(3)求证:OE=OD.【考点】全等三角形的判定与性质.【分析】(1)根据△ABC中,∠B=60°,所以∠BAC+∠BCA=120度.因为AD平分∠BAC,CE平分∠ACB,可求出∠AOC=120°;(2)求出∠AOE=60度.在AC上截取AF=AE,连接OF,易证△AOE≌△AOF,∠AOE=∠AOF=60°,可证△COD≌△COF,则CD=CF.因为AF=AE,所以AC=AF+CF=AE+CD,即AE+CD=AC;(3)根据全等得出OE=OF,OD=OF,即可得出答案.【解答】(1)解:在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=180°﹣60°=120°.∵AD平分∠BAC,CE平分∠ACB,∴∠OAC=∠OAB=∠BAC,∠OCD=∠OCA=∠ACB,在△OAC中,∠AOC=180°﹣(∠OAC+∠OCA)=180°﹣(∠BAC+∠ACB)=180°﹣×120°=120°;(2)证明:∵∠AOC=120°,∴∠AOE=∠DOC=180°﹣∠AOC=180°﹣120°=60°,在AC上截取AF=AE,连接OF,如图,在△AOE和△AOF中,∴△AOE≌△AOF(SAS),第28页(共28页) ∴∠AOE=∠AOF,∴∠AOF=60°,∴∠COF=∠AOC﹣∠AOF=120°﹣60°=60°,又∠COD=60°,∴∠COD=∠COF,在△COD和△COF中,,∴△COD≌△COF(ASA),∴CD=CF.又∵AF=AE,∴AC=AF+CF=AE+CD,即AE+CD=AC;(3)证明:∵△AOE≌△AOF,△COD≌△COF,∴OE=OF,OF=OD,∴OE=OD. 28.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A.C.D能构成周长为30cm的三角形,求出木条AD,BC的长度.第28页(共28页) 【考点】全等三角形的应用.【分析】(1)连接AC,根据SSS证明两个三角形全等即可;(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,∵,∴△ACD≌△ACB(SSS),∴∠B=∠D;(2)设AD=x,BC=y,∵当点C在点D右侧时,,解得;当点C在点D左侧时,,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm. 第28页(共28页) 2017年2月15日第28页(共28页)

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料