2.1.1平面教学案例
加入VIP免费下载

2.1.1平面教学案例

ID:1220108

大小:3.07 MB

页数:28页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
新课导入桌子给我们平面的印象 黑板给我们平面的印象 平静的水面给我们平面的印象 2.1.1平面 教学目标利用生活中的实物对平面进行描述。掌握平面的基本性质及作用。培养学生的空间想象能力。知识与能力 通过师生的共同讨论,使学生对平面有了感性认识。使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。过程与方法情感态度与价值观 教学重难点平面的概念及表示。平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。平面基本性质的掌握与运用。重点难点 平面的概念光滑的桌面、平静的湖面、镜面和黑板面等都给我们以平面的印象。几何中的“平面”是现实平面加以抽象的结果。 立体几何中的平面的特点:1.平的不是凹凸不平2.四周无限延展没有边界3.不计大小无所谓面积4.不计厚薄没有体积 平面的表示方法几何画法:通常用平行四边形来表示平面。通常把平行四边形的锐角画成45°,横边画成邻边长的2倍。ADCB 如果一个平面的一部分被另一个平面遮住,为增强立体感,常把遮住部分画成虚线。αα 符号表示:通常用希腊字母α,β,γ等来表示,如:平面α,平面β;也可用表示平行四边形的四个顶点,或两个相对顶点的大写字母来表示,如:平面ABCD,平面AC,平面BD。ADCB 点A在平面α内:记为:A∈αABα点与平面的位置关系点B不在平面α上:记为:Bα 若一条直线l与平面α有一个公共点,直线l是否在平面α内?若直线l与平面α有两个公共点呢?思考把直尺和桌面分别看做一条直线和一个平面。(1)若直尺上的一个点在桌面内,直线可能不在面上。(2)若直尺上有两个点放在桌面上,整个直尺就落在了桌面上。 公理1如果一条直线上两点在一个平面内,那么这条直线在此平面内。αlAB符号表示: 1.可以用来判定一条直线是否在平面内.即要判定直线在平面内,只需确定直线上两个点在平面内即可。2.可以用来判定点在平面内,即如果直线在平面内、点在直线上,则点在平面内。3.表明平面是“平的”。公理1的作用 直线l在平面α内:记为:l∈α直线与平面的位置关系直线l不在平面α上:记为:lαα 生活中,我们常看到用三脚架固定相机等物品。这样做有什么原因吗?思考 公理2过不在同一直线上的三点,有且只有一个平面。αACB可记做平面ABC公理2是确定平面的依据。 把三角板的一角放在桌面上,三角板所在平面与桌面只有一个交点吗?在长方体中,两个相交平面都有一条公共直线.是否能够推广?思考 公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 1.是判定两个平面相交,即如果两个平面有一个公共点,那么这两个平面相交;2.是判定点在直线上,即点若是某两个平面的公共点,那么这点就在这两个平面的交线上。公理3的作用 长方体的ABCD-A‘B’C‘D’中如图三个面所在平面分别记做α,β,γ,用适当的符号填空。∈∈∈∈∈∈∩∩∩∩∩αβγ例一 课堂小结A∈aB∈aA∈αB∈ααaαAbaBaAαABb∩α=Aa∥α点与直线位置关系点与平面位置关系直线与平面位置关系 公理1如果一条直线上两点在一个平面内,那么这条直线在此平面内。公理2过不在同一直线上的三点,有且只有一个平面。公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。三个公理 随堂练习1.已知命题:①10个平面重叠起来,要比5个平面重叠起来要厚。②有一个平面的长是50m,宽是20m。③黑板面是平面。④平面是绝对的平,没有大小,没有厚度,可以无限延展的抽象的数学概念。其中正确的命题是()④ 2.两个平面能将空间分成几部分?3或4两个平面相交1342132两个平面平行 3.三个平面能将空间分成几部分?13244674个或6个或7个

10000+的老师在这里下载备课资料