2.1.1《平面》导学案【学习目标】知识与技能:利用生活中的实物对平面进行描述;掌握平面的表示法及水平放置的直观图;掌握平面的基本性质及作用;培养学生的空间想象能力。过程与方法:通过共同讨论,增强对平面的感性认识;归纳整理本节所学知识情感态度与价值观:认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。【重点难点】学习重点:1、平面的概念及表示;2、平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言。学习难点:平面基本性质的掌握与运用。【学法指导】通过阅读教材,联系身边的实物思考、交流,从而较好地完成本节课的学习目标。【知识链接】生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?【学习过程】A问题1、平面含义A问题2、平面的画法A问题3、平面的表示平面通常用希腊字母()等表示,如()等,也可以用表示平面的平行四边形的()来表示,如()等。如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成()A问题4、点与平面的关系·B:平面内有无数个点,平面可以看成点的集合。点A在平面α内,记作:点B在平面α外,记作:A例1、判断下列各题的说法正确与否,在正确的说法的题号后打√,否则打×:1)、一个平面长4米,宽2米;()2)、平面有边界;()3)、一个平面的面积是25cm2;()4)、菱形的面积是4cm2;()5)、一个平面可以把空间分成两部分.()A问题5如果直线l与平面α有一个公共点,直线l是否在平面α内?如果直线l与平面α有两个公共点呢?
A问题6公理1:符号表示为公理1作用:判断直线是否在平面内B问题C·B·A·α7公理2:符号表示为:公理2作用:确定一个平面的依据。注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“有且只有一个平面”也可以说成“确定一个平面.B问题P·αLβ8公理3:符号表示为:公理3作用:判定两个平面是否相交的依据B例题教材P43例1【基础达标】B课本P43练习1、2、3、4①为什么有的自行车后轮旁只安装一只撑脚?②三角形、梯形是否一定是平面图形?为什么?③四条线段顺次首尾连接,所得的图形一定是平面图形吗?为什么?④用符号表示下列语句,并画出图形:⑴点A在平面α内,点B在平面α外;⑵直线L在平面α内,直线m不在平面α内;⑶平面α和β相交于直线L⑷直线L经过平面α外一点P和平面α内一点Q;⑸直线L是平面α和β的交线,直线m在平面α内,和m相交于点P.【学习反思】1.平面的概念,画法及表示方法.2.平面的性质及其作用3.符号表示