2015秋高中数学 2.1.1平面学案设计 新人教a版必修2
加入VIP免费下载

2015秋高中数学 2.1.1平面学案设计 新人教a版必修2

ID:1220208

大小:231.06 KB

页数:4页

时间:2022-08-13

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面学习目标1.利用生活中的实物对平面进行描述;2.掌握平面的表示法及水平放置的直观图;3.掌握平面的基本性质及作用;4.培养学生的空间想象能力.合作学习一、设计问题,创设情境请你从适当的角度和距离观察桌面、黑板或者门的表面,它们呈现出怎样的形象?二、自主探索,尝试解决问题1:以上实物都给我们以平面的印象,那么,平面的含义是什么呢?三、信息交流,揭示规律根据学生讨论结果,教师引导,得出平面的含义:1.平面含义问题2:在平面几何中,怎样画平面?2.平面的画法问题3:清楚了平面的含义,会画水平放置的平面,那么平面如何表示呢?3.平面的表示问题4:如果直线l与平面α有一个公共点P,直线l是否在平面α内?问题5:如果直线l与平面α有两个公共点呢? 问题6:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等……自行车要放稳需几个点?问题7:把一个三角板的一个角立在课桌上,三角板所在的平面与桌面所在的平面是否只相交于一点B,为什么?四、运用规律,解决问题【例1】用符号表示下列图形中点、直线、平面之间的关系.【例2】不共面的四点可以确定几个平面?共点的三条直线可以确定几个平面?【例3】点A∉平面BCD,E,F,G,H分别是AB,BC,CD,DA上的点,若EH与FG交于点P(这样的四边形ABCD就叫做空间四边形).求证:P在直线BD上.五、变式演练,深化提高1.判断下列命题的真假,真的打“√”,假的打“×”.(1)可画一个平面,使它的长为4cm,宽为2cm.(  )(2)一条直线把它所在的平面分成两部分,一个平面把空间分成两部分.(  )(3)一个平面的面积为20cm2.(  )(4)经过面内任意两点的直线,若直线上各点都在这个面内,那么这个面是平面.(  )2.(1)一条直线与一个平面会有几种位置关系?    . (2)如图所示,两个平面α,β,若相交于一点,则会发生什么现象? (3)几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,有一同学提议可将几根一样长的木棍在等高处用绳捆扎一下作桌脚(如图所示),问至少要几根木棍才可能使桌面稳定?六、反思小结,观点提炼请同学们总结一下本节课所学习内容:1.平面的概念;2.平面的画法、表示方法及两个平面相交的画法;3.点、直线、平面间基本关系的文字语言、图形语言和符号语言之间关系的转换;4.平面的基本性质.七、作业精选,巩固提高试用集合符号表示下列各语句,并画出图形:(1)点A在平面α内,但不在平面β内;(2)直线a经过不属于平面α的点A,且a不在平面α内;(3)平面α与平面β相交于直线l,且l经过点P;(4)直线l经过平面α外一点P,且与平面α相交于点M.参考答案二、问题1:几何里所说的平面就是从这样的一些物体中抽象出来的.但是,几何里的平面是无限延展的.平面的两个特征:①无限延展;②平的(没有厚度).问题2:(1)一个平面画法:水平放置的平面通常画成一个平行四边形,平行四边形的锐角通常画成45°,且横边长等于邻边长的2倍(如图).(2)直线与平面相交,如图(2)(3); (3)两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮挡部分的线段画成虚线或不画(如图).问题3:(1)平面通常用希腊字母α,β,γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母来表示,如平面ABCD、平面AC等.(2)空间图形的基本元素是点、直线、平面,从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.问题4:学生思考容易发现,直线l不一定在平面α内.问题5:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.问题6:自行车放稳需要3个点.引导学生得到公理2.公理2:过不在一条直线上的三点,有且只有一个平面.问题7:两个平面不是只相交于一点B,而是交于过B点的一条直线.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.四、【例1】解:图1中,α∩β=l,a∩α=A,a∩β=B.图2中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.【例2】解:不共面的四点可以确定4个平面(如三棱锥);共点的三条直线可以确定1个或3个平面.【例3】证明:∵EH∩FG=P,∴P∈EH,P∈FG,∵E,H分别属于直线AB,AD,∴EH⊂平面ABD,∴P∈平面ABD,同理:P∈平面CBD,又∵平面ABD∩平面CBD=BD,所以,P在直线BD上.五、1.(1)× (2)√ (3)× (4)√2.(1)3种 (2)相交于经过这个点的一条直线 (3)至少3根

10000+的老师在这里下载备课资料