2.1.1 平 面学习目标 1.掌握平面的表示法,点、直线与平面的位置关系;2.掌握有关平面的三个公理;3.会用符号表示图形中点、直线、平面之间的位置关系.知识点一 平面思考 几何里的“平面”有边界吗?用什么图形表示平面?答案 没有.平行四边形.1.平面的概念(1)平面是一个不加定义,只需理解的原始概念.(2)立体几何里的平面是从呈平面形的物体中抽象出来的.如课桌面、黑板面、平静的水面等都给我们平面的局部形象.2.平面的画法常常把水平的平面画成一个平行四边形,并且其锐角画成45°,且横边长等于邻边长的2倍.一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来.3.平面的表示方法(1)用希腊字母表示,如平面α,平面β,平面γ.(2)用表示平面的平行四边形的四个顶点的大写字母表示,如平面ABCD.(3)用表示平面的平行四边形的相对的两个顶点表示,如平面AC,平面BD.知识点二 点、直线、平面之间的关系思考 直线和平面都是由点组成的,联系集合的观点,点和直线平面的位置关系,如何用符号来表示?直线和平面呢?答案 点和直线,平面的位置关系可用数字符号“∈”或“∉”表示,直线和平面的位置关系,可用数学符号“⊂”或“⊄”表示.点、直线、平面之间的基本位置关系及语言表达文字语言表达图形语言表达符号语言表达点A在直线l上A∈l
点A在直线l外A∉l点A在平面α内A∈α点A在平面α外A∉α直线l在平面α内l⊂α直线l在平面α外l⊄α平面α,β相交于lα∩β=l知识点三 平面的基本性质思考1 直线l与平面α有且仅有一个公共点P.直线l是否在平面α内?有两个公共点呢?答案 前者不在,后者在.思考2 观察下图,你能得出什么结论?答案 不共线的三点可以确定一个平面.思考3 观察正方体ABCDA1B1C1D1(如图所示),平面ABCD与平面BCC1B1有且只有两个公共点A、B吗?答案 不是,平面ABCD与平面BCC1B1相交于直线BC.公理文字语言图形语言符号语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α①确定直线在平面内的依据②判定点在平面内公理2A,B,C三点不共线⇒存在唯一的平面α①确定平面的依据②判定点线共面
过不在一条直线上的三点,有且只有一个平面使A,B,C∈α公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α且P∈β⇒α∩β=l,且P∈l①判定两平面相交的依据②判定点在直线上类型一 点、直线、平面之间的位置关系的符号表示例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.解 在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.反思与感悟 借助集合中的符号来表示几何中点、线、面的关系就是几何中的符号语言,符号语言的运用简洁明了地表达了几何中的各元素的关系,比文字语言更适合于几何关系的表示,因此,要逐步适应并掌握.跟踪训练1 若点M在直线a上,a在平面α内,则M,a,α之间的关系可记为( )A.M∈a,a∈αB.M∈a,a⊂αC.M⊂a,a⊂αD.M⊂a,a∈α答案 B解析 点与直线的关系为元素与集合的关系,能用“∈”,直线与平面的关系为集合间的关系,不能用“∈”.类型二 平面性质的应用例2 已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证明 方法一 (纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.
又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.方法二 (辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.反思与感悟 证明点、线共面问题,一般先由部分点线确定一个平面,再证其他的点和线在所确定的平面内.跟踪训练2 已知a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:a,b,c和l共面.证明 如图,∵a∥b,∴a与b确定一个平面α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴l⊂α.∵b∥c,∴b与c确定一个平面β,同理l⊂β.∵平面α与β都包含l和b,且b∩l=B,由公理2的推论知:经过两条相交直线有且只有一个平面,∴平面α与平面β重合,∴a,b,c和l共面.例3 已知△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,如图所示.求证:P、Q、R三点共线.证明 方法一 ∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q、R也在平面ABC与平面α的交线上.∴P、Q、R三点共线.方法二 ∵AP∩AR=A,
∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P、Q、R三点共线.反思与感悟 证明多点共线的方法是利用公理3,只需说明这些点都是两个平面的公共点,则必在这两个面的交线上.也可考虑为点P、R确定一条直线,Q也在这条直线上,这也是证明共点、共线、共面问题的常用方法.跟踪训练3 如图所示,在正方体ABCD—A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE、D1F、DA三线交于一点.证明 如图,连接EF,D1C,A1B.∵E为AB的中点,F为AA1的中点,∴EF綊A1B.又∵A1B綊D1C,∴EF綊D1C,∴E,F,D1,C四点共面,∴D1F与CE相交于点P.又D1F⊂平面A1D1DA,CE⊂平面ABCD.∴P为平面A1D1DA与平面ABCD的公共点.又平面A1D1DA∩平面ABCD=DA,根据公理3,可得P∈DA,即CE、D1F、DA相交于一点.1.若A∈平面α,B∈平面α,C∈直线AB,则( )A.C∈αB.C∉αC.AB⊄αD.AB∩α=C答案 A
解析 因为A∈平面α,B∈平面α,所以AB⊂α.又因为C∈直线AB,所以C∈α.2.下列说法正确的是( )A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面答案 D解析 A选项中,三点若在同一直线上就不能确定一个平面;B中,这一点在直线上不能确定一个平面;空间四边形ABCD就不是平面图形,故C错.3.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α________.(2)α∩β=a,P∉α且P∉β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.答案 (1)C (2)D (3)A (4)B4.空间两两相交的三条直线可以确定的平面数是________.答案 1或35.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P与直线DE的位置关系是________.答案 P∈直线DE解析 因为P∈AB,AB⊂平面ABC,所以P∈平面ABC.又P∈α,平面ABC∩平面α=DE,所以P∈直线DE.1.三个公理的作用:公理1——判定直线在平面内的依据;公理2——判定点共面、线共面的依据;公理3——判定点共线、线共点的依据.2.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.
3.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.4.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.一、选择题1.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行答案 B解析 两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面.2.下列命题中正确的是( )A.空间三点可以确定一个平面B.三角形一定是平面图形C.若A,B,C,D既在平面α内,又在平面β内,则平面α和平面β重合D.四条边都相等的四边形是平面图形答案 B解析 共线的三点不能确定一个平面,故A错;两个平面有公共点,这两个平面可以是相交的,故C错;四边都相等的四边形可以是空间四边形.3.如图所示,用符号语言可表示为( )A.α∩β=m,n⊂α,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,n⊂α,A⊂m,A⊂nD.α∩β=m,n∈α,A∈m,A∈n答案 A解析 很明显,α与β交于m,n在α内,m与n交于A,故选A.4.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条
答案 D解析 当三个平面两两相交且过同一直线时,它们有1条交线;当平面β和γ平行时,它们的交线有2条;当这三个平面两两相交且不过同一条直线时,它们有3条交线.5.空间不共线的四点,可以确定平面的个数是( )A.0B.1C.1或4D.无法确定答案 C解析 空间不共线四点可以确定的平面个数可以是1或4,它取决于四个点的相互位置关系.6.空间中A,B,C,D,E五个点,已知A,B,C,D在同一平面内,B,D,C,E在同一平面内,那么这五点( )A.共面B.不一定共面C.不共面D.以上都不对答案 B解析 本题容易错选A.认为A,B,C,D,E在B,C,D三点所确定的平面内,没有考虑B,C,D是否能确定一个平面.B,C,D三点可能共线.若A,E两点所在直线与B,C,D三点所在直线不平行且没有交点,则有A,B,C,D,E五点不共面.7.如图,平面α∩β=l,A∈α,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为平面γ,则β∩γ是( )A.直线ACB.直线BCC.直线CRD.以上都不对答案 C解析 由C,R是平面β和γ的两个公共点,可知β∩γ=CR.二、填空题8.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确的个数是________.答案 0解析 命题①错,因为在空间中这两条直线可能既不相交也不平行,即不在同一平面内;命题②错,若交于同一点时,可以不共面,如正方体同一顶点的三条棱.命题③错,这三个不同公共点可能在它们的公共交线上.命题④错,两两平行的三条直线也可在同一个平面内.所以正确命题的个数为0.9.已知α∩β=m,a⊂α,b⊂β,a∩b=A,则直线m与A
的位置关系用集合符号表示为________.答案 A∈m解析 因为A∈a⊂α,所以A∈α,同理A∈β,又α∩β=m,故A在α与β的交线m上.10.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是________(填序号).①A∈a,A∈β,B∈a,B∈β⇒a⊂β;②M∈α,M∈β,N∈α,N∈β⇒α∩β=MN;③A∈α,A∈β⇒α∩β=A;④A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合.答案 ③解析 ∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.11.已知A∈α,B∉α,若A∈l,B∈l,那么直线l与平面α有________个公共点.答案 112.如图所示,A、B、C、D为不共面的四点,E、F、G、H分别在AB、BC、CD、DA上.(1)如果EH∩FG=P,那么点P在________上;(2)如果EF∩GH=Q,那么点Q在________上.答案 (1)BD所在的直线.(2)AC所在的直线.解析 由公理3易得.三、解答题13.已知a,b,c,d是两两相交且不共点的四条直线,求证:a,b,c,d共面.证明 (1)无三线共点情况,如图①.设a∩d=M,b∩d=N,c∩d=P,a∩b=Q,a∩c=R,b∩c=S.因为a∩d=M,所以a,d可确定一个平面α.因为N∈d,Q∈a,所以N∈α,Q∈α.所以NQ⊂α,即b⊂α.同理c⊂α,所以a,b,c,d共面.(2)有三线共点的情况,如图②.设b,c,d三线相交于点K,与a分别交于N,P,M,且K∉a.
因为K∉a,所以K和a确定一个平面,设为β.因为N∈a,a⊂β,所以N∈β,所以NK⊂β,即b⊂β.同理c⊂β,d⊂β,所以a,b,c,d共面.由(1)(2)知a,b,c,d共面.14.在四面体ABCD中,E,G分别为BC,AB的中点,F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求证:EF,GH,BD交于一点.证明 因为E,G分别为BC,AB的中点,所以GE∥AC.又因为DF∶FC=DH∶HA=2∶3,所以FH∥AC,从而FH∥GE.故E,F,H,G四点共面.所以四边形EFHG是一个梯形,设GH和EF交于一点O.因为O在平面ABD内,又在平面BCD内,所以O在这两个平面的交线上.而这两个平面的交线是BD,且交线只有这一条,所以点O在直线BD上.这就证明了GH和EF的交点也在BD上,所以EF,GH,BD交于一点.