2021年北师大版七下《生活中的轴对称》单元检测卷一、选一选,牛刀初试露锋芒!(每小题3分,共30分)1.下列图形中,轴对称图形的个数是()A.4个B.3个C.2个D.1个2.下列分子结构模型平面图中,有一条对称轴的是()3.如图1,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()A.5个B.4个C.3个D.2个4.下列说法中错误的是()A.两个关于某直线对称的图形一定能够完全重合B.对称图形的对称点一定在对称轴的两侧C.成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D.平面上两个能够完全重合的图形不一定关于某直线对称5.如图,△AOD关于直线进行轴对称变换后得到△BOC,下列说法中不正确的是().图2
A.∠DAO=∠CBO,∠ADO=∠BCOB.直线垂直平分AB、CDC.△AOD和△BOC均是等腰三角形D.AD=BC,OD=OC6.将一个正方形纸片依次按图,图的方式对折,然后沿图中的虚线裁剪,最后将图的纸再展开铺平,所看到的图案是().abcdABCD图37.如图3,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为()A.10cmB.12cmC.15cmD.20cm8.图4是小明在平面镜里看到的电子钟示数,这时的实际时间是()图4A.12:01B.10:51C.10:21D.15:109.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图5所示的图形,两条直角边在同一直线上.则图中等腰三角形有()个.A.1个B.2个C.3个D.4个10.如图6,,,AB的垂直平分线交BC于点D,那么的度数为().A.B.C.D.图5图7图6
二、填一填,狭路相逢勇者胜!(每小题3分,共30分)11.在一些缩写符号:①SOS,②CCTV,③BBC,④WWW,⑤TNT中,成轴对称图形的是(填写序号)12.已知等腰三角形的顶角是底角的4倍,则顶角的度数为.13.如图7,公路BC所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远.正确的是.(填写序号)14.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字.(笔画的粗细和书写的字体可忽略不记).15.如图8(下页),AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是.16.从汽车的后视镜中看见某车车牌的后5位号码是,则该车的后5位号码实际是.17.下午2时,一轮船从A处出发,以每小时40海里的速度向正南方向行驶,下午4时,到达B处,在A处测得灯塔C在东南方向,在B处测得灯塔C在正东方向,则B、C之间的距离是.18.如图9,在中,,AB=25cm,AB的垂直平分线交AB于点D,交AC于点E,若的周长为43cm,则底边BC的长为.AEPDGHFBACD图10图8图919.如图10,把宽为2cm的纸条沿同时折叠,、两点恰好落在边的点处,若△PFH的周长为10cm,则长方形的面积为.
20.在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述结论中,正确的有.(填写序号)图11三、想一想,百尺竿头再进步!(共60分)21.(7分)如图11,在中,,平分,,如果,,求的长度及的度数.图1222.(7分)如图12,已知AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm.求AE的长.图1323.(8分)如图13,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.
24.(8分)如图14,在正方形网格上有一个△ABC.图14(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.25.(10分)(1)观察图15①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征; (2)借助图15⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图14①~④的图案不能重合).图1526.(10分)如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.
27.(10分)如图17,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的中点,且EF∥BC.图17(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.
答案一、选一选,牛刀初试露锋芒!1.B.点拨:可利用轴对称图形的定义判断.2.A.点拨:选项A有1条对称轴,选项B、C各有2条对称轴,选项D有6条对称轴.3.A.点拨:图中的角分别是:.4.B.点拨:对称图形的对称点也可能在对称轴上.5.C.点拨:△AOD和△BOC的形状不确定.6.D.点拨:可动手操作,或空间想象.7.C.点拨:由题意得,AD=BD.故△ACD的周长=AC+CD+AD=AC+BC=15cm8.B.点拨:镜子中看到的时刻的读数与实际时刻的读数关于镜子成轴对称.9.C.点拨:等边三角形是特殊的等腰三角形,故等腰三角形有△EPQ、△BPR、△PAD.10.A.点拨:可求得.二、填一填,狭路相逢勇者胜!11.③,④.12.120°.点拨:设底角的度数为,则顶角的度数为4,则有++4=180.13.②、③.点拨:利用线段的垂直平分线的性质.14.本,幸,苦.点拨:答案不惟一,只要是轴对称图形即可.15.3.点拨:利用转化思想,阴影部分的面积即为直角三角形ABD的面积.16.BA629.点拨:这5位号码在镜子中所成的像关于镜面成轴对称.17.80海里.点拨:画出示意图可知,△ABC是等腰直角三角形.18.18cm.点拨:由BE+CE=AC=AB=25,可得BC=43-25=18(cm).19..点拨:根据轴对称的性质得,BC的长即为△PFH的周长.20.①②④⑤.点拨:∠ABC=∠C=∠BDC=72°;∠CBD=∠ABD=∠A=36°.三、想一想,百尺竿头再进步!21.因为平分,,,所以.又因为平分,所以,所以.
22.因为△ABD、△BCE都是等腰三角形,所以AB=BD,BC=BE.又因为BD=CD-BC,所以AB=CD-BC=CD-BE=8cm-3cm=5cm,所以AE=AB-BE=2cm.23.如答图1所示.到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C、D的距离相等的点则在线段CD的垂直平分线上,故交点P即为所求.24.(1)如答图2所示.点拨:利用图中格点,可以直接确定出△ABC中各顶点的对称点的位置,从而得到△ABC关于直线MN的对称图形△.(2).点拨:利用和差法.答图1答图225.(1)都是轴对称图形;它们的面积相等(都是4). (2)答案不惟一,如答图3所示.答图326.因为AB=AC,AE平分∠BAC,所以AE⊥BC(等腰三角形的“三线合一”)因为∠ADC=125°,所以∠CDE=55°,所以∠DCE=90°-∠CDE=35°,又因为CD平分∠ACB,所以∠ACB=2∠DCE=70°.又因为AB=AC,所以∠B=∠ACB=70°,所以∠BAC=180-(∠B+∠ACB)=40°.
27.(1)因为EF∥BC,所以∠AEF=∠B,∠AFE=∠C.又因为AB=AC,所以∠B=∠C,所以∠AEF=∠AFE,所以AE=AF,即△AEF是等腰三角形.(2)DE=DF.理由如下:方法一:因为AD是等腰三角形ABC的底边上的高,所以AD也是∠BAC的平分线.又因为△AEF是等腰三角形,所以AG是底边EF上的高和中线,所以AD⊥EF,GE=GF,所以AD是线段EF的垂直平分线,所以DE=DF.方法二:因为AD是高,所以BD=CD(三线和一);又因为点E、F分别是边AB、AC上的中点,所以BE=CF,又因为∠B=∠C,所以△BDE≌△CDF(SAS),所以DE=DF.