2021年人教版数学七年级下册《平面直角坐标系》单元测试一、选择题1.能确定某学生在教室中的具体位置的是( )A.第3排B.第2排以后C.第2列D.第3排第2列2.在平面直角坐标系中,点(3,-4)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.如果点P(a+1,a-1)在x轴上,那么点P的坐标为( )A.(-2,0)B.(2,0)C.(0,-2)D.(0,2)4.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为( )
A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)7.一个长方形的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下面哪个点不在长方形上( )A.(4,-2)B.(-2,4)C.(4,2)D.(0,-2)8.点P(2-a,2a-1)到x轴的距离为3,则a的值为( )A.2B.-2C.2或-1D.-19.过A(4,-2)和B(-2,-2)两点的直线一定( )A.垂直于x轴B.与y轴相交但不平行于x轴C.平行于x轴D.与x轴,y轴平行10.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式a=+2.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则点P的坐标为( )A.(-3,1)B.(-2,1)C.(-4,1)D.(-2.5,1)二、填空题11.小李在教室里的座位位置记作(2,5),表示他坐在第二排第五列,那么小王坐在第四列第三排记作________.12.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为________.
13.若第四象限内的点P(x,y)满足|x|=3,y2=4,则点P的坐标是________.14.如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标________.15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.三、解答题19.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.
20.如图,长方形ABCD在坐标平面内,点A的坐标是A(,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?
23.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.
25.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发s时,试求三角形PQC的面积;(3)设两点运动的时间为ts,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).
参考答案1.D2.D3.B4.D5.C6.A7.B8.C9.C10.A.11.(3,4)12.(1,3)13.(3,-2)14.(-1,7)15.(1,1)16.-117.±418.(2017,2)19.解:(1)三角形A′B′C′如图所示.(2)建立的平面直角坐标系如图所示.点B的坐标为(1,2),点B′的坐标为(3,5).20.解:(1)∵A(,1),AB=4,AD=2,
∴BC到y轴的距离为4+,CD到x轴的距离2+1=3,∴点B的坐标为(4+,1),点C的坐标为(4+,3),点D的坐标为(,3).(2)由图可知,先向下平移1个单位长度,再向左平移个单位长度(或先向左平移个单位长度,再向下平移1个单位长度).21.解:由题意,得1-a=2a+7或1-a+2a+7=0,解得a=-2或-8,故6-5a=16或46,∴6-5a的平方根为±4或±.22.解:(1)过B作BF⊥x轴于F,过A作AG⊥x轴于G,如图所示.∴S四边形ABCO=S三角形BCF+S梯形ABFG+S三角形AGO=2500(平方米).(2)把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,故所得到的四边形的面积与原四边形的面积相等,为2500平方米.23.解:(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2).三角形DEF是由三角形ABC先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(2)由题意得2a-3=a+3,2b-3-3=4-b,)解得a=6,b=,)∴a-b=.24.解:(1)三角形ABC如图所示.(2)如图,过点C向x轴、y轴作垂线,垂足为D,E.
∴S长方形DOEC=3×4=12,S三角形BCD=×2×3=3,S三角形ACE=×2×4=4,S三角形AOB=×2×1=1.∴S三角形ABC=S长方形DOEC-S三角形ACE-S三角形BCD-S三角形AOB=12-4-3-1=4.(3)当点P在x轴上时,S三角形ABP=AO·BP=4,即×1×BP=4,解得BP=8.∵点B的坐标为(2,0).∴点P的坐标为(10,0)或(-6,0);当点P在y轴上时,S三角形ABP=BO·AP=4,即×2·AP=4,解得AP=4.∵点A的坐标为(0,1),∴点P的坐标为(0,5)或(0,-3).综上所述,点P的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).25.解:(1)B(4,5),C(4,2),D(8,2).(2)当t=s时,点P运动的路程为cm,点Q运动到点D处停止,由已知条件可得BC=OA-DE=5-2=3(cm).∵AB+BC=7cm>cm,AB=4cm<cm,∴当t=s时,点P运动到BC上,且CP=AB+BC-=4+3-=cm.∴S三角形CPQ=CP·CD=××4=3(cm2).(3)①当0≤t<4时,点P在AB上,点Q在OE上,如图①所示,OA=5cm,OQ=2tcm,∴S三角形OPQ=OQ·OA=·2t·5=5t(cm2);②当4≤t≤5时,点P在BC上,点Q在ED上,如图②所示,过P作PM∥x轴交ED延长线于M,则OE=8cm,EM=(9-t)cm,PM=4cm,EQ=(2t-8)cm,MQ=(17-3t)cm,∴S三角形OPQ=S梯形OPME-S三角形PMQ-S三角形OEQ=×(4+8)·(9-t)-×4·(17-3t)-×8·(2t-8)=(52-8t)(cm2);③当5<t≤7时,点P在BC上,点Q停在D点,如图③所示,过P作PM∥x轴交ED的延长线于M,则MD=CP=(7-t)cm,ME=(9-t)cm,∴S三角形OPQ=S梯形OPME-S三角形PDM-S三角形DOE=×(4+8)·(9-t)-×4·(7-t)-×8×2=(32-4t)(cm2).
综上所述,S=(12分)