人教版数学八年级上册期末模拟试卷八(含答案)
加入VIP免费下载

人教版数学八年级上册期末模拟试卷八(含答案)

ID:1220714

大小:255.5 KB

页数:16页

时间:2022-08-14

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教版数学八年级上册期末模拟试卷一、选择题1.下列计划图形,不一定是轴对称图形的是(  )A.角B.等腰三角形C.长方形D.直角三角形2.将0.000015用科学记数法表示为(  )A.1.5×10﹣5B.1.5×10﹣4C.1.5×10﹣3D.1.5×10﹣23.点P(﹣1,2)关于y轴对称的点的坐标是(  )A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列计算中,正确的是(  )A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.x(x﹣2)=﹣2x+x2D.3x3y2÷xy2=3x45.分式有意义,则x的取值范围是(  )A.x>1B.x≠1C.x<1D.一切实数6.下列二次根式中可以和相加合并的是(  )A.B.C.D.7.下列各式中,从左到右的变形是因式分解的是(  )A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy8.若3x=4,3y=6,则3x﹣2y的值是(  ) A.B.9C.D.39.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为(  )A.3B.4C.5D.610.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(  )A.﹣2B.2C.0D.111.下列各式中,满足完全平方公式进行因式分解的是(  )A.4x2﹣12xy+9y2B.2x2+4x+1C.2x2+4xy+y2D.x2﹣y2+2xy12.对于算式20172﹣2017,下列说法不正确的是(  )A.能被2016整除B.能被2017整除C.能被2018整除D.不能被2015整除13.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是(  )A.B.2﹣C.2﹣2D.﹣114.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为(  )A.B.C.D.二、填空题15.分解因式:a2b﹣b3=  .16.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为  . 17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为  厘米.18.如图,在△ABC中,按以下步骤作图:①分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为  .三、解答题19.计算:﹣﹣220.先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=221.解方程:﹣1=. 22.已知A=﹣,B=2x2+4x+2.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.23.如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数. 25.因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?26.已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.(1)求A点坐标.(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.  参考答案与试题解析一、选择题1.下列计划图形,不一定是轴对称图形的是(  )A.角B.等腰三角形C.长方形D.直角三角形【解答】解:A、角一定是轴对称图形,不符合题意,本选项错误;B、等腰三角形一定是轴对称图形,不符合题意,本选项错误;C、长方形一定是轴对称图形,不符合题意,本选项错误;D、直角三角形不一定是轴对称图形,符合题意,本选项正确.故选:D. 2.将0.000015用科学记数法表示为(  )A.1.5×10﹣5B.1.5×10﹣4C.1.5×10﹣3D.1.5×10﹣2【解答】解:将0.000015用科学记数法表示为1.5×10﹣5,故选:A. 3.点P(﹣1,2)关于y轴对称的点的坐标是(  )A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【解答】解:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知:点P(﹣1,2)关于y轴对称的点的坐标是(1,2).故选A. 4.下列计算中,正确的是(  )A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.x(x﹣2)=﹣2x+x2D.3x3y2÷xy2=3x4【解答】解:A、结果是x5,故本选项不符合题意;B、结果是x2﹣y2,故本选项不符合题意;C、结果是﹣2x+x2,故本选项符合题意;D、结果是3x2,故本选项不符合题意;故选:C.  5.分式有意义,则x的取值范围是(  )A.x>1B.x≠1C.x<1D.一切实数【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B. 6.下列二次根式中可以和相加合并的是(  )A.B.C.D.【解答】解:A、不能化简,不合题意,故A错误;B、=3,符合题意,故B正确;[来源:学&科&网Z&X&X&K]C、=,不合题意,故C错误;D、=2不合题意,故D错误;故选:B. 7.下列各式中,从左到右的变形是因式分解的是(  )A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【解答】解:A、2a2﹣2a+1=2a(a﹣1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x﹣y)=x2﹣y2,这是整式的乘法,故此选项不符合题意;C、x2﹣6x+5=(x﹣5)(x﹣1),是因式分解,故此选项符合题意;D、x2+y2=(x﹣y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C. 8.若3x=4,3y=6,则3x﹣2y的值是(  )A.B.9C.D.3【解答】解:3x﹣2y=3x÷(3y)2=4÷62=.故选:A.  9.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为(  )A.3B.4C.5D.6【解答】解:∵DE是BC的垂直平分线,∴EB=EC=10,∵∠B=30°,∠EDB=90°,∴DE=EB=5,故选:C. 10.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(  )A.﹣2B.2C.0D.1【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选:B. 11.下列各式中,满足完全平方公式进行因式分解的是(  )A.4x2﹣12xy+9y2B.2x2+4x+1C.2x2+4xy+y2D.x2﹣y2+2xy【解答】解:A、4x2﹣12xy+9y2=(2x﹣3y)2,能用完全平方公式进行因式分解,故此选项正确;B、2x2+4x+1,不能用完全平方公式进行因式分解,故此选项错误;C、2x2+4xy+y2,不能用完全平方公式进行因式分解,故此选项错误;D、x2﹣y2+2xy,不能用完全平方公式进行因式分解,故此选项错误.故选:A.  12.对于算式20172﹣2017,下列说法不正确的是(  )A.能被2016整除B.能被2017整除C.能被2018整除D.不能被2015整除【解答】解:20172﹣2017=2017×(2017﹣1)=2017×2016,则结果能被2016及2017整除,不能被2018整除,不能被2015整除.故选:C. 13.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是(  )A.B.2﹣C.2﹣2D.﹣1【解答】解:∵点A,B所对应的实数分别是1和,∴AB=﹣1,∵点B与点C关于点A对称,∴AC=AB,∴点C所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选:B. 14.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为(  )A.B.C.D.【解答】解:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得:=15,故选:A. 二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)15.分解因式:a2b﹣b3= b(a+b)(a﹣b) .【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b), 故答案为:b(a+b)(a﹣b) 16.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为 3 .【解答】解:根据垂线段最短,PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,∴PQ=PA=3.故答案为:3. 17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为 14 厘米.【解答】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10cm,∴筷子露在杯子外面的长度至少为24﹣10=14cm,故答案为14. 18.如图,在△ABC中,按以下步骤作图: ①分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为 68° .【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=28°,∴∠DAC=28°,∴∠ADB=56°,∵AB=BD,∴∠BAD=∠BDA=56°,∴∠B=180°﹣56°﹣56°=68°.故答案为:68°. 三、解答题(共8小题,满分60分)19.(6分)计算:﹣﹣2【解答】解:原式=2﹣﹣,=﹣. 20.(6分)先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=2[来源:Z.Com]【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=2时,原式=4﹣5=﹣1.  21.(6分)解方程:﹣1=.【解答】解:方程两边同乘x(x﹣1),得x2﹣x2+x=2x﹣2,整理,得﹣x=﹣2,解得,x=2,检验:当x=2时,x(x﹣1)=2≠0,则x=2是原分式方程的解. 22.(7分)已知A=﹣,B=2x2+4x+2.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.【解答】解:(1)A=﹣=﹣=﹣==;B=2x2+4x+2=2(x2+2x+1)=2(x+1)2;(2)∵B=0,∴2(x+1)2=0,∴x=﹣1.当x=﹣1时,A===﹣2. 23.(7分)如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积. 【解答】解:∵在△ABC中,AC=5,BC=12,AB=13,∴132=52+122,∴AB2=AC2+CB2,∴△ABC是直角三角形,∵D是BC的中点,∴CD=BD=6,∴在Rt△ACD中,AD=,∴△ABD的面积=×BD×AC=15. 24.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵AB=AD+BD,AB=AD+EC,∴BD=EC,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS)∴DE=EF, ∴△DEF是等腰三角形;(2)∵∠A=40°,∴∠B=∠C==70°,∴∠BDE+∠DEB=110°,又∵△DBE≌△ECF,∴∠BDE=∠FEC,∴∠FEC+∠DEB=110°,∴∠DEF=70°. 25.(6分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?【解答】解:设限行期间这路公交车每天运行x车次,,解得,x=50,经检验x=50是原分式方程的根,答:限行期间这路公交车每天运行50车次. 26.(12分)已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.(1)求A点坐标.(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由. 【解答】解(1)由题得m=2,n=2,∴A(2,2);(2)如图1,连结OC,由(1)得AB=BO=2,∴△ABO为等腰直角三角形,∴∠BAO=∠BOA=45°,∵△ABC,△OAD为等边三角形,∴∠BAC=∠OAD=∠AOD=60°,OA=OD∴∠BAC﹣∠OAC=∠OAD﹣∠OAC即∠DAC=∠BAO=45°在△OBC中,OB=CB=2,∠OBC=30°,∴∠BOC=75°,∴∠AOC=∠BAO﹣∠BOA=30°,∴∠DOC=∠AOC=30°,在△OAC和△ODC中,∵,∴△OAC≌△ODC, ∴AC=CD,[来源:学#科#网Z#X#X#K]∴∠CAD=∠CDA=45°,∴∠ACD=90°,∴AC⊥CD;(3)如图,在x轴负半轴取点M,使得OM=AG=b,连接BG,在△BAG和△BOM中,∵,∴△BAG≌△BOM∴∠OBM=∠ABG,BM=BG又∠FBG=45°∴∠ABG+∠OBF=45°∴∠OBM+∠OBF=45°∴∠MBF=∠GBF在△MBF和△GBF中,∵,∴△MBF≌△GBF∴MF=FG∴a+b=c代入原式=0. 

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料