苏科版数学八年级上册期中模拟试卷一、选择题1.下列四个汽车标志图中,不是轴对称图形的是( )A.B.C.D.第3题图2.在下列以线段a、b、c的长为边,能构成直角三角形的是( )A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=253.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A.BD=CDB.AB=ACC.∠B=∠CD.∠BDA=∠CDA第4题图4.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是( )A.SSSB.ASAC.ASAD.ASA5.到三角形三个顶点的距离相等的点是三角形( )A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是( )1·c·n·j·yA.B.C.D.第8题图7.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )A.7cm B.3cm C.7cm或3cm D.8cm8.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为( )A.36 B.9 C.6 D.18
二、填空题9.右图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是______.10.已知△ABC≌△A′B′C′,△ABC的周长为12cm,AB=3cm,BC=4cm,则A′C′=______cm.11.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是______(只添一个条件即可)12.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为______cm.第11题图第12题图第13题图13.若直角三角形斜边上的高和中线长分别是5cm,6cm,则这个直角三角形的面积是______cm2.14.如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB=______°.15.如图,将一根长为20cm的吸管,置于底面直径为5cm,高为12cm的圆柱形水杯中,设吸管露在杯子外面的长度是为hcm,则h的取值范围是______第15题图第16题图第17题图第18题图16.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=______.17.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2017=______.
18.如图,∠AOB=30°,点M,N分别在边OA,OB上,OM=5,ON=12,点P,Q分别在边OB,OA上运动,连接MP,PQ,QN,则MP+PQ+QN的最小值为______.第19题图三、解答题19.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.20.作图题(保留作图痕迹)(1)如图1,利用网格线用三角尺画图,在AC上找一点P,使得P到AB、BC的距离相等;(2)图2是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.请在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上.21.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.第21题图
22.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;第22题图23.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=AB.第23题图
第24题图24.如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.25.张老师在一次“探究性学习”课中,设计了如下数表:n2345…a22-132-142-152-1…b46810…c22+132+142+152+1…(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=______,b=______,c=______;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.
26.如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.第26题图第27题图27.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.(1)求证:AE=AF;(2)求证:CD=2BE+DE.
28如图,正方形ABCD(四边相等,四个角都是直角)的边长为4,点P从点A出发,以每秒1个单位长度的速度沿射线AD向点D运动;点Q从点D同时出发,以相同的速度沿射线AD方向向右运动,当点P到达点D时,点Q也停止运动,连接BP,过点P作BP的垂线交过点Q平行于CD的直线l于点E,BE于CD相交于点F,连接PF,设点P运动时间为t(s),(1)求∠PBE的度数;(2)当t为何值时,△PQF是以PF为腰的等腰三角形?(3)试探索在运动过程中△PDF的周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.第28题图
试题答案一选择题:1.B2.D3.A4.A5.C6.C7.B8.A二填空题:9.20:5110.511.CD=BD等12.2813.3014.6015.7≤h≤816.6或1217.2201618.13三解答题:19.证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.……………8分20.解:(1)如图1所示;.……………4分(2)如图2所示.………8分.21.解:在Rt△ABC中,AB=3m,BC=4m,∠B=90°由勾股定理得AB2+BC2=AC2∴AC=5m在△ADC中,AC=5m,DC=12m,AD=13m∴AC2+DC2=169,AD2=169∴AC2+DC2=AD2∴∠ACD=90°四边形的面积=SRt△ABC+SRt△ADC=36(m2)答:这块草坪的面积是36m2.……………8分
22.(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.……………4分(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.……………8分23.证明:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴【出处:21教育名师】……………10分24.解:(1)∵四边形ABCD是长方形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,∴△ADF≌△AB′E(ASA).……………5分21·世纪*教育网(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC-FC=18-x,在Rt△ADF中,AD2+DF2=AF2,∴122+(18-x)2=x2.解得x=13.∵△ADF≌△AB′E(已证),
∴AE=AF=13,∴S△AEF=78.……………10分21cnjy.com25.解:(1)由题意有:n2-1,2n,n2+1;……………3分(2)猜想为:以a,b,c为边的三角形是直角三角形.证明:∵a=n2-1,b=2n;c=n2+1∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c为边的三角形是直角三角形.……………8分26.解:(1)AB=DE,AB⊥DE,如图,∵AD⊥CA,∴∠DAE=∠ACB=90°.在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),AB=DE,∠3=∠1.∵∠DAE=90°,∴∠1+∠2=90°,∴∠3+∠2=90°,∴∠AFE=90°,∴AB⊥DE;……………5分(2)证明:∴a2+b2=c2.……………10分27.解:证明:(1)如图,∵∠BAC=90°,AF⊥AE,∴∠EAB+∠BAF=∠BAF+∠FAC=90°,∴∠EAB=∠FAC,∵BE⊥CD,∴∠BEC=90°,∴∠EBD+∠EDB=∠ADC+∠ACD=90°,∵∠EDB=∠ADC,∴∠EBA=∠ACF,∴△AEB≌△AFC(ASA),∴AE=AF;……………6分(2)如图,过点A作AG⊥EC,垂足为G.
∵AG⊥EC,BE⊥CE,∴∠BED=∠AGD=90°,∵点D是AB的中点,∴BD=AD.∴△BED≌△AGD(AAS),∴ED=GD,BE=AG,∵AE=AF∴∠AEF=∠AFE=45°∴∠FAG=45°∴∠GAF=∠GFA,∴GA=GF,∴CF=BE=AG=GF∵CD=DG+GF+FC,∴CD=DE+BE+BE,∴CD=2BE+DE……………12分28.解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠A=90°,∵AP=DQ,∴AD=PQ=AB,∵PB⊥PE,∴∠BPE=90°,∴∠ABP+∠APB=90°,∠APB+∠EPQ=90°,∴∠ABP=∠EPQ,∴△ABP≌△QPE,∴PB=PE,∴∠PBE=∠PEB=45°.……………5分(2)如图2中,①当AP=PD时,∵AP=DQ,∴DP=DQ,∵FD⊥PQ,∴PF=FQ,∴△PFQ是等腰三角形,此时t=2.②当点P与点D重合时,PF=CD=AD=DQ,△PFQ是等腰三角形,此时t=4.综上所述,t=2s或4s时,△PFQ是以PF为腰的等腰三角形.……………9分(3)如图3中,△PDF的周长是定值.将△BCF绕点B顺时针旋转90°得到△BAG.∵∠PBE=45°,∠ABC=90°,∴∠ABP+∠CBF=∠ABP+∠ABG=45°,∴∠PBG=∠PBF,在△PBG和△PBF中,,∴△PBG≌△PBF,∴PF=PG,
∴PF=PA+AG=PA+CF,∴△PDF的周长=PF+DP+DF=(PA+DP)+(DF+CF)=AD+CD=8.∴△PDF的周长为定值.……………14分