第19讲 特殊三角形第1课时 等腰三角形1.等腰三角形考试内容考试要求概念有两条边 的三角形是等腰三角形.a性质1.等腰三角形是轴对称图形,一般有 条对称轴.2.性质1:等腰三角形的两底角 (简写成“等边对 ”).3.性质2:等腰三角形的顶角平分线、底边上的 、底边上的 相互重合(简写成“三线合一”).c判定1.有两边相等的三角形是等腰三角形;2.有两角相等(简写成“等角对 ”)的三角形是等腰三角形.2.等边三角形考试内容考试要求概念有 条边相等的三角形叫做等边三角形.a性质1.具有一般等腰三角形的所有性质;2.等边三角形的三个角都相等,并且每个角都于 ;3.等边三角形是轴对称图形,共有 条对称轴.c判定1.三条边相等的三角形是等边三角形;2.三个角都 的三角形是等边三角形;3.有一个角是 的等腰三角形是等边三角形.拓展S等边△ABC=ah=a2,h=a,其中a为边长,h为高.
考试内容考试要求基本方法求等腰三角形腰上的高,在所给条件不确定的条件下,应按顶角为锐角和钝角两种情况来考虑:(1)当顶角为锐角时,腰上的高在三角形内部;(2)当顶角为钝角时,腰上的高在三角形外部.c1.(·台州)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )A.AE=ECB.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE2.(·丽水)等腰三角形的一个内角为100°,则顶角的度数是____________________.3.(·义乌)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是____________________cm.【问题】如图,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D为EC中点.
(1)你能从图中得到哪些信息?(2)求∠CAE的度数;(3)求证:△ADE是等边三角形. 【归纳】通过开放式问题,归纳、疏理等腰三角形、等边三角形的有关知识.类型一 等腰三角形的性质与判定 如图,在△ABC中,∠B=∠C,点D在BC上.(1)若顶角40°,则一个底角的度数为________;(2)若一个内角50°,则顶角的度数为________;(3)若一个外角为100°,则顶角的度数为________;(4)若AD⊥BC,AB=6,CD=4,则△ABC的周长是________.(5)若BD=DC,∠B=50°,则∠DAC=________.(6)若△ABC的两条边长为7cm和14cm,则它的底边为________cm.【解后感悟】解答此类问题时要注意角的指代明确性:顶角还是底角、内角还是外角;对于(4)(5)没有明确腰和底边的题目一定要想到两种情况分类讨论,还应验证各种情况是否能构成三角形进行解答.1.(1)(·泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )
A.44°B.66°C.88°D.92°(2)(·绍兴模拟)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为( )A.20°B.35°C.40°D.55°(3)(·滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51.5°D.52.5°(4)(·温州模拟)如图,等腰△ABC中,AB=AC,AD平分∠BAC,点E是线段BC延长线上一点,连结AE,点C在AE的垂直平分线上,若DE=10cm,则AB+BD= cm.类型二 等边三角形的性质与判定 (1)等边△ABC中,AB=4,则它的高为________,△ABC的面积为________;(2)如图1,等边△ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,△ABC的边长为a,则△ADE的周长是________;(3)如图2,等边△ABC中,D是AC边上的中点,延长BC到点E,使CE=CD,则∠E的度数为________;(4)如图3,等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.
【解后感悟】解题的关键是利用现有图形或画出图形,利用等边三角形的性质及勾股定理,揭示图形之间的数量关系来解决问题.2.(1)(·本溪模拟)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 .(2)(·上海模拟)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是 .(请写出正确结论的序号).3.(·河北模拟)如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.
类型三 等腰三角形构造的分类讨论 (·黄冈模拟)在平面直角坐标系xOy中,已知点P(2,2),点Q在坐标轴上,△PQO是等腰三角形,则满足条件的点Q共有______个.【解后感悟】此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是如何确定点Q(即分类讨论),以及利用勾股定理求出OP的长.4.(1)(·西宁模拟)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连结AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是____________________度.(2)(·丹东模拟)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有 个.类型四 等腰三角形的探究问题 (1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连结BE.填空:①∠AEB的度数为________;②线段AD、BE之间的数量关系是________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连结BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题
如图3,在正方形ABCD中,CD=.若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解后感悟】本题主要考查了运用已有的知识和经验解决问题的能力,而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)题的关键.它是中考的热点题型.5.(·江西模拟)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是 .类型五 等腰三角形的综合运用 (·石家庄模拟)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连结OD.
(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?【解后感悟】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进,试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等).6.(·河南)(1)发现如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于 时,线段AC的长取得最大值,且最大值为 .(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连结CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.
图1图2(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.【探索研究题】(·菏泽)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连结BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△
ABE中AE边上的高,试证明:AE=2CM+BN.【方法与对策】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.这类探究性问题,往往从特殊到一般,积累经验,利用前小题的结论或方法解决问题.这类问题是中考的热点题型.【忽视等腰三角形腰的高线不明确】(·西宁)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .
参考答案第19讲 特殊三角形第1课时 等腰三角形【考点概要】1.相等 一 相等 等角 中线 高 等边 2.三 60° 三 相等 60°【考题体验】1.C 2.100° 3.18【知识引擎】【解析】(1)从角、边、对称性、图形的形状角度去考虑,并注意之间的相关性.(2)根据等腰三角形两底角相等求出∠B=30°,∠BAE=∠B=30°,∴∠CAE=120°-30°=90°;(3)根据直角三角形斜边上的中线性质得出AD=EC=ED=DC,得出∠DAC=∠C=30°,∴∠EAD=60°,∴△ADE是等边三角形.【例题精析】例1 (1)70° (2)80°或50° (3)80°或20° (4)20 (5)40° (6)7 例2 (1)2;4;(2)a;(3)30°;(4)60° 例3 ∵P(2,2),∴OP==2,∴当点Q在y轴上时,Q点的坐标分别为(0,2),(0,-2),(0,4),(0,2);当点Q在x轴上时,Q点的坐标分别为(2,0),(-2,0),(4,0),(2,0).所以共有8个.故答案为:8. 例4 (1)①60° ②AD=BE; (2)∠AEB=90°;AE=2CM+BE.理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=
∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰Rt△DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE. (3)或.∵PD=1,∠BPD=90°,∴BP是以点D为圆心、以1为半径的⊙D的切线,点P为切点.第一种情况:如图1,过点A作AP的垂线,交BP于点P′,可证△APD≌△AP′B,PD=P′B=1,CD=,∴BD=2,BP=,∴AM=PP′=(PB-BP′)=.第二种情况如图2,可得AM=PP′=(PB+BP′)=. 例5 (1)∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形. (2)当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC-∠ODC=90°,∵∠α=150°,∠AOB=110°,∠COD=60°,∴∠AOD=360°-∠α-∠AOB-∠COD=360°-150°-110°-60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形. (3)①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°-110°-60°-α=190°-α,∠OAD==120°-,∴190°-α=120°-,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【变式拓展】1.(1)D (2)B (3)D (4)10 2.(1)45° (2)①② 3.(1)略. (2)60°. 4.(1)120和150 (2)5 5.25°或40°或10° 6.(1)CB的延长线上 a+b (2)①DC=BE,理由如下:∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∴△CAD≌△EAB.∴DC=BE.②BE的最大值是4.(3)AM长的最大值是3+2,点P的坐标为(2-,).
【热点题型】【分析与解】(1)①∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°-2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,DC=EC,∴△ACD≌△BCE(SAS),∴AD=BE. ②∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°-∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC-∠CED=130°-50°=80°.(2)∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°-120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°-30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC-∠CEM=150°-30°=120°,∴∠BEN=180°-120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=2CM+BN.【错误警示】当等腰三角形的顶角是钝角时,腰上的高在外部.即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°-20°=70°.故答案为:110°或70°.