第18讲 三角形与全等三角形1.三角形的概念及其分类2.与三角形有关的线段考试内容考试要求高____________________三角形的三条高相交于三角形的内部;直角三角形的三条高相交于____________________;钝角三角形的三条高相交于三角形的外部.b中线三角形的三条中线相交于____________________,每一条中线都将三角形分成面积____________________的两部分.角平分线三角形的三条角平分线相交于____________________,这个点是三角形的____________________,这个点到三边的距离____________________.三边关系三角形的两边之和____________________第三边,三角形的两边之差____________________第三边.c稳定性三角形具有稳定性,四边形没有稳定性.a三角形的中位线定义连结三角形两边____________________的线段叫做三角形的中位线.c性质三角形的中位线____________________第三边,并且等于第三边的____________________.
3.与三角形有关的角考试内容考试要求定理三角形三个内角的和等于____________________.bc推论直角三角形的两个锐角____________________.三角形的外角等于与它不相邻的两个内角的____________________.4.全等三角形的性质与判定考试内容考试要求性质全等三角形的对应边____________________,对应角_____________.c判定判定1:三边分别相等的两个三角形全等(简写成“边边边”或“SSS”);判定2:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”);判定3:两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”);判定4:两角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”);判定5:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).考试内容考试要求基本方法1.分析问题思考方法:(1)顺推分析:从已知条件出发,运用相应的定理,联合几个已知条件加以发展,一步一步地去靠近欲证目标;(2)逆推分析:从欲证结论入手,分析达到欲证的可能途径,c
逐步沟通它与已知条件的联系,从而找到证明方法;(3)顺推分析与逆推分析相结合;(4)联想分析:对于一道与证明过的题目有类似之处的新题目,分析它们之间的相同点与不同点,尝试把对前一道题的思考转用于现在的题目中,从而找到它的解法.2.“截长法”和“补短法”是证明和差关系的重要方法,无论用哪一种方法都是要将线段的和差关系转化为证明线段相等的问题,因此添加辅助线构造全等三角形是通向结论的桥梁.1.(·舟山)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是( ) A.4B.5C.6D.92.(·衢州)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( )A.30°B.40°C.60°D.70°3.(·丽水)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为____________________.4.(·温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.
【问题】如图,在△ABC中,点D是边BC上一点,作射线AD.(1)若点D是BC的中点,你能得到什么结论?若AD是∠BAC的角平分线呢?(2)在线段AD及其延长线上分别取点E、F,DE=DF,连结CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是________.(不添加辅助线).【归纳】通过开放式问题,归纳、疏理中线、高、角平分线,以及三角形全等的判定,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.类型一 三角形的三边关系 (·金华)下列各组数中,不可能成为一个三角形三边长的是( )A.2,3,4B.5,7,7C.5,6,12D.6,8,10【解后感悟】三角形的三边关系定理:任意两边之和大于第三边.只要满足两短边的和大于最长的边,就可以构成三角形.
1.(1)(·杭州市下城区模拟)已知△ABC的三边长都是整数,且AB=2,BC=6,则△ABC的周长可能是( )A.12B.14C.16D.17(2)(·义乌模拟)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )A.6B.7C.8D.9(3)小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x的值应满足( )A.x=3B.x=7C.x=3或x=7D.3≤x≤7类型二 三角形的内角、外角的性质 (·衢州模拟)如图,锐角三角形ABC中,直线l为BC的垂直平分线,直线m为∠ABC的角平分线,l与m相交于P点.若∠BAC=60°,∠ACP=24°,则∠ABP的度数为( )A.24°B.30°C.32°D.36°【解后感悟】本题是线段垂直平分线上的点到两端点的距离相等的性质、角平分线的定义、三角形的内角和定理的运用,熟记各性质并列出关于∠ABP的方程是解题的关键.2.(1)(·宁波模拟)已知:△ABC的三个内角满足∠A=2∠B=3∠C,则△ABC是____________________三角形.(填“锐角”、“直角”、“钝角”)(2)(·舟山模拟)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=____________________度.
3.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数. 类型三 三角形的角平分线、中线和高 如图,在△ABC中,AE是中线,AD是角平分线,AF是高,∠B=30°,∠C=80°,BE=2,AF=3,填空:(1)AB=________.(2)∠BAD=________.(3)∠DAF=________.(4)S△AEC=________.【解后感悟】理解三角形的角平分线、中线和高;三角形内角和定理.揭示三线构建图形之间的联系.4.(1)(·长沙)如图,过△ABC的顶点A作BC边上的高,以下作法正确的是( )
(2)(·绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°5.(·广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为____________________.6.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B