北师大版数学七年级上册期末模拟试卷一、选择题1.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.12.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是( )A.圆锥B.圆柱C.球体D.以上都有可能3.下列运算中正确的是( )A.(a4)3=a7B.a6÷a3=a2C.(2ab)3=6a3b3D.﹣a5×a4=﹣a94.若是同类项,则m+n=( )A.﹣2B.2C.1D.﹣15.下列算式中正确的是( )A.3x2•5x3=15x5B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314D.﹣2=﹣96.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC=35°,则∠BON的度数为( )A.35°B.45°C.55°D.64°7.如图,若点A在点O北偏西60°的方向上,点B在点O的南偏东25°的方向上,则∠AOB(小于平角)的度数等于( )
A.55°B.95°C.125°D.145°8.解方程的步骤如下,发生错误的步骤是( )A.2(x﹣1)﹣(x+2)=3(4﹣x)B.2x﹣2﹣x+2=12﹣3xC.4x=12D.x=39.下列调查中,适宜采用普查方式的是( )A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件10.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( )A.30,40B.45,60C.30,60D.45,4011.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A.2a﹣3bB.4a﹣8bC.2a﹣4bD.4a﹣10b12.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是( )A.3x+1=4x﹣2B.3x﹣1=4x+2C.D.
二、填空题13.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,则到达地球的辐射能功率为 千瓦.14.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话: .15.课本上有这样两个问题:如图,从甲地到乙地有3条路,走哪条路较近?从甲地到乙地能否修一条最短的路?这些问题均与关于线段的一个基本事实相关,这个基本事实是 .16.线段AB=8cm,M是AB的中点,点C在AM上,AC等于3cm,N为BC的中点,则MN= cm.17.当x= 时,代数式2x﹣与代数式x﹣3的值相等.18.定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2017= .三、解答题19.计算:(1)(﹣24)÷(0.5)2;(2)×24
20.先化简,再求值:﹣x(3x﹣4y)﹣[x2﹣2x(4﹣4y)],其中x=﹣2.21.解方程:(1)x﹣2=;(2)=222.已知:如图,∠AOB=150°,OC平分∠AOB,∠AOD是直角,求∠COD的度数.
23.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.24.一次数学课上,老师要求学生根据图示张鑫与李亮的对话内容,展开如下活动:活动1:仔细阅读对话内容活动2:根据对话内容,提出一些数学问题,并解答.下面是学生提出的两个问题,请你列方程解答.(1)如果张鑫没有办卡,她需要付多少钱?(2)你认为买多少元钱的书办卡就便宜?
25.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2.(1)A、B对应的数分别为 、 ;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)点A、B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB﹣mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
参考答案1.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.1【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“5”与“2x﹣3”是相对面,“y”与“x”是相对面,“﹣2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2x﹣3+5=0,x+y=0,解得x=﹣1,y=1,∴2x+y=2×(﹣1)+1=﹣2+1=﹣1.故选:B. 2.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是( )A.圆锥B.圆柱C.球体D.以上都有可能【解答】解:A、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;D、根据以上分析可得此选项错误;故选:B.
3.下列运算中正确的是( )A.(a4)3=a7B.a6÷a3=a2C.(2ab)3=6a3b3D.﹣a5×a4=﹣a9【解答】解:A、(a4)3=a12,故本选项错误;B、a6÷a3=a3,故本选项错误;C、(2ab)3=8a3b3,故本选项错误;D、正确;故选:D. 4.若是同类项,则m+n=( )A.﹣2B.2C.1D.﹣1【解答】解:由同类项的定义可知m+2=1且n﹣1=1,解得m=﹣1,n=2,所以m+n=1.故选:C. [来源:Z.Com]5.下列算式中正确的是( )A.3x2•5x3=15x5B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314D.﹣2=﹣9【解答】解:A、3x2•5x3=15x5,此选项正确;B、﹣0.00010=﹣1、(﹣9999)0=1,不相等,此选项错误;C、3.14×10﹣3=0.00314,此选项错误;D、﹣2=9,此选项错误;故选:A. 6.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC=35°,则∠BON的度数为( )
A.35°B.45°C.55°D.64°【解答】解:∵射线OM平分∠AOC,∠MOC=35°,∴∠MOA=35°,又∠MON=90°,∴∠BON=55°,故选:C. 7.如图,若点A在点O北偏西60°的方向上,点B在点O的南偏东25°的方向上,则∠AOB(小于平角)的度数等于( )A.55°B.95°C.125°D.145°【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东25°的方向上,∴∠AOB=30°+90°+25°=145°.故选:D. 8.解方程的步骤如下,发生错误的步骤是( )
A.2(x﹣1)﹣(x+2)=3(4﹣x)B.2x﹣2﹣x+2=12﹣3xC.4x=12D.x=3【解答】解:去分母得,2(x﹣1)﹣(x+2)=3(4﹣x),去括号得,2x﹣2﹣x﹣2=12﹣3x,移项、合并得,4x=16,系数化为1得,x=4.所以,发生错误的步骤是去括号一步.故选:B. 9.下列调查中,适宜采用普查方式的是( )A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D. 10.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( )
A.30,40B.45,60C.30,60D.45,40【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选:B. 11.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A.2a﹣3bB.4a﹣8bC.2a﹣4bD.4a﹣10b【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.[来源:Z§xx§k.Com] 12.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是( )A.3x+1=4x﹣2B.3x﹣1=4x+2C.D.【解答】解:∵设共有x个苹果,∴每个小朋友分3个则剩1个时,小朋友的人数是;,若每个小朋友分4个则少2个时,小朋友的人数是;,
∴,故选:C. 二、填空题(本题共6小题,每小题填对得4分,共24分)13.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,则到达地球的辐射能功率为 1.9×1014 千瓦.【解答】解:3.8×1023×=1.9×1014,故答案为:1.9×1014. 14.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话: (a+b)2=2ab+a2+b2. .【解答】解:由题意可得:(a+b)2=2ab+a2+b2.故答案为:(a+b)2=2ab+a2+b2. 15.课本上有这样两个问题:如图,从甲地到乙地有3条路,走哪条路较近?从甲地到乙地能否修一条最短的路?这些问题均与关于线段的一个基本事实相关,这个基本事实是 两点之间线段最短 .【解答】解:这个基本事实是:两点之间线段最短.故答案为:两点之间线段最短. 16.线段AB=8cm,M是AB的中点,点C在AM上,AC等于3cm,N为BC的中点,则MN= 1.5 cm.【解答】解:如图,∵AB=8cm,AC=3cm,∴BC=AB﹣AC=5cm,
∵N为BC中点,∴BN=BC=2.5cm,又∵AB=8cm,且M是AB中点,∴BM=AB=4cm,∴MN=BM﹣BN=1.5cm.故答案为:1.5. 17.当x= ﹣ 时,代数式2x﹣与代数式x﹣3的值相等.【解答】解:根据题意得:2x﹣=x﹣3,去分母得:4x﹣1=x﹣6,移项合并得:3x=﹣5,解得:x=﹣,故答案为:﹣ 18.定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2017= ﹣ .【解答】解:∵a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,∴a2==,a3==3,∴a4==﹣,…∵2017÷3=672…1,
∴第2017个数与第1个数相等,故则a2017=﹣.故答案为:﹣. 三、解答题(本题共7小题,满分60分)[来源:Z.Com]19.(10分)计算:(1)(﹣24)÷(0.5)2;(2)×24【解答】解:(1)原式=16×﹣﹣=﹣﹣=﹣;(2)原式=﹣﹣15﹣4+14=﹣5. 20.(7分)先化简,再求值:﹣x(3x﹣4y)﹣[x2﹣2x(4﹣4y)],其中x=﹣2.【解答】解:原式=﹣3x2+4xy﹣x2+4x﹣4xy=﹣x2+4x,当x=﹣2时,原式=﹣14﹣8=﹣22. 21.(10分)解方程:(1)x﹣2=;(2)=2【解答】解:(1)x﹣2=去分母得:6x﹣12=3(x﹣1)﹣2(x+2)去括号得:6x﹣12=3x﹣3﹣2x﹣4移项得:6x﹣3x+2x=12﹣4﹣3合并同类项得:5x=5系数化为1得:x=1
(2)=2去分母得:2(2x+1)﹣(x﹣2)=1去括号得:4x+2﹣x+2=1移项得:4x﹣x=1﹣2﹣2合并同类项得:3x=﹣3系数化为1得:x=﹣1. 22.(7分)已知:如图,∠AOB=150°,OC平分∠AOB,∠AOD是直角,求∠COD的度数.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC=∠AOB=×150°=75°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°. 23.(7分)为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数=×360°=48°. 24.(9分)一次数学课上,老师要求学生根据图示张鑫与李亮的对话内容,展开如下活动:活动1:仔细阅读对话内容活动2:根据对话内容,提出一些数学问题,并解答.下面是学生提出的两个问题,请你列方程解答.(1)如果张鑫没有办卡,她需要付多少钱?(2)你认为买多少元钱的书办卡就便宜?【解答】(1)解:设如果张鑫没有办卡,她需要付x元,则有:20+0.8x=x﹣12,
整理方程得:0.2x=32,解得:x=160,答:如果张鑫没有办卡,她需要付160元;(2)解:设买y元的书办卡与不办卡的花费一样多,则有:y=20+0.8y,解得y=100.所以当购买的书的总价多于100元时,办卡便宜,答:我认为买多于100元钱的书办卡就便宜. 25.(10分)如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2.(1)A、B对应的数分别为 ﹣10 、 5 ;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)点A、B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB﹣mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【解答】解:(1)设OA=2x,则OB=x,由题意得,2x+x=15,[来源:学.科.网Z.X.X.K]解得,x=5,则OA=10、OB=5,∴A、B对应的数分别为﹣10、5,故答案为:﹣10;5;(2)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15﹣1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=,
答:2或秒后A、B相距1个单位长度;(3)设t秒后4AP+3OB﹣mOP为定值,由题意得,4AP+3OB﹣mOP=4×[7t﹣(4t﹣10)]+3(5+3t)﹣7mt=(21﹣7m)t+55,∴当m=3时,4AP+3OB﹣mOP为定值55.