中考数学一轮总复习18《多边形与平行四边形》知识讲解+巩固练习(基础版)(含答案)
加入VIP免费下载

中考数学一轮总复习18《多边形与平行四边形》知识讲解+巩固练习(基础版)(含答案)

ID:1221640

大小:292 KB

页数:15页

时间:2022-08-14

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
中考总复习:多边形与平行四边形--知识讲解(基础)【考纲要求】【高清课堂:多边形与平行四边形考纲要求】1.多边形A:了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.B:会用多边形的内角和与外角和公式解决计算问题;能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形.(2)平行四边形A:会识别平行四边形.B:掌握平行四边形的概念、判定和性质,会用平行四边形的性质和判定解决简单问题.C:会运用平行四边形的知识解决有关问题.【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n-2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义 用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理  1.连接三角形两边中点的线段叫做三角形的中位线.  2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是(  ) A.60°B.65°C.55°D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.(2011·十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是(  )A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有(  )A.2种B.3种C.4种D.5种【答案】B.类型二:平行四边形及其他知识的综合运用 3.(2014春•章丘市校级月考)如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC的中点.           (1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG. 【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC,则DF=CE=BE.(2)AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,       ∴EF是△ABC的中位线.       ∴EF∥AB,.       又∵ ,       ∴EF=AD.       ∵EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.       又∵F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.     (2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.       又∵EF∥AB,∴∠B=∠FEC.        又∵AG∥BC,∴∠DAG=∠B,         ∴∠DAG=∠FEC        ∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()               A.线段EF的长逐渐增大    B.线段EF的长逐渐变小  C.线段EF的长不变      D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2. 【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6.(2012•厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+3-4,求BC的长.【思路点拨】 (1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=,EO=1,∴tan∠EPO=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF∥AO,且PF=AO,∵PF⊥BD,∴∠PFD=90°,∴∠AOD=∠PFD=90°,又∵PE⊥AC,∴∠AEP=90°,∴∠AOD=∠AEP,∴PE∥OD,∵点P是AD的中点,∴PE是△AOD的中位线,∴PE=OD,∵PE=PF,∴AO=OD,且AO⊥OD,∴平行四边形ABCD是正方形, 设BC=x,则BF=x+×x=x,∵BF=BC+3-4=x+3-4,∴x+3-4=x,解得x=4,即BC=4.【总结升华】本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上的一动点,PA⊥x轴,QB⊥y轴,垂足分别为A、B.  (1)写出正比例函数和反比例函数的关系式;  (2)当点Q在直线MO上运动时,是否可以使△OBQ与△OAP面积相等?  (3)如图2,点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.                 图1                  图2  【答案】(1)正比例函数解析式为,反比例函数解析式为.     (2)当点Q在直线MO上运动时,       设点Q的坐标为,,解得.       所以点Q的坐标为和.     (3)因为P(,),由勾股定理得OP=,       平行四边形OPCQ周长=.       因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为 ,       由勾股定理可得,通过图形分析可得:        OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.       所以平行四边形OPCQ周长的最小值:.中考总复习:多边形与平行四边形-巩固练习(基础)【巩固练习】一、选择题1.任意三角形两边中点的连线与第三边上的中线().  A.互相平分  B.互相垂直 C.相等  D.互相垂直平分2.(2015春•平顶山期末)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有(  )A.0个B.1个C.2个D.3个3.若一个多边形的对角线的条数恰好为边数的3倍,则这个多边形的边数为(  ).A.6    B.7    C.8    D.94.如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为(  )A.2B.C.4D. 5.下列说法正确的是( ).  A.平行四边形的对角线相等  B.一组对边平行,另一组对边相等的四边形是平行四边形  C.平行四边形的对角线交点到一组对边的距离相等  D.沿平行四边形的一条对角线对折,这条对角线两旁的图形能够重合6.如图,在□ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形(  ). (A)AE=CF   (B)DE=BF   (C)∠ADE=∠CBF   (D)∠AED=∠CFB二、填空题7.已知:A、B、C、D四点在同一平面内,从①AB∥CD②AB=CD③BC∥AD④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法共有________种.8.平行四边形两邻边上的高分别是和,高的夹角是60°,则这个平行四边形的周长为____,面积为__________.9.如图,已知直线m∥n,A、B为直线n上两点,C、P为直线m上两点,     (1)请写出图中面积相等的三角形________________________________________.(2)如果A、B、C为三个定点,点P在m上移动,那么,无论点P移动到什么位置,总有______与△ABC的面积相等,理由是________________.10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________. 11.(2012•茂名)从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是_______________.12.(2014春•深圳期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,过点O作PF⊥BC于点F,交AD于点E,交BA的延长线于点P.若PE=EO=2,PA=3,则△OBC的面积等于  . 三、解答题13.如图,已知△ABC,以BC为边在点A的同侧作正△DBC,以AC、AB为边在△ABC的外部作正△EAC和正△FAB.求证:四边形AEDF是平行四边形. 14.(2015•枣庄)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.15.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. 16(2011•贵阳)[阅读]在平面直角坐标系中,以任意两点P( x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为_______.(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【答案与解析】一.选择题1.【答案】A.2.【答案】B.【解析】由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以,故选B.3.【答案】D.【解析】设边数为n,则,∴n=9.4.【答案】B.【解析】在▱ABCD中,AB∥CD且AB=CD.又∵AE∥BD,∴四边形ABDE为平行四边形,∴DE=AB.∵EF⊥ BC,DF=2,∴CE=2DF=4.∵∠ECF=∠ABC=60°,∴EF=CE·sin∠ECF=4×=2.5.【答案】C.6.【答案】B.二.填空题7.【答案】4.8.【答案】20;.9.【答案】(1)△ABC与△ABP;△ACP与△BCP;△AOC与△BOP;(2)△ABP;同底等高.10.【答案】n2+2n.【解析】第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n.11.【答案】8.【解析】设多边形有n条边,则n-2=6,解得n=8.12.【答案】4.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,BO=DO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴EO=FO,AE=FC,∵PE=EO=2,∴FO=2,∵AE∥BF,PF⊥BC,∴△PAE∽△PBF,∠PEA=90°,∴=,∴AE==,∴=,解得:BF=3,则BC=4,故△OBC的面积为:FO×BC=×2×4=4.故答案为:4.三.综合题13.【解析】证明:∵△ABF为正三角形,      ∴AB=FB,∠1+∠2=60°.     ∵△EAC和△BCD是正三角形,     ∴AE=AC,BC=BD,∠3+∠2=60°,       ∴∠1=∠3.     在△BDF和△BCA中,          ∴△BDF≌△BCA(SAS),     ∴FD=AC .     又∵AE=AC ,     ∴FD=AE ,     同理可证△CAB≌△CED,可得AB=ED=AF ,     ∴四边形AEDF是平行四边形.14.【解析】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==DO,∴在等腰RT△ADB中,DB=2DO=2=AD∴AD=2, 15.【解析】解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.证明:∵CE∥AB,∴∠DAO=∠ECO,∵OA=OC,∴△ADO≌△ECO,∴AD=CE,∴四边形ADCE是平行四边形,∴CD平行且等于AE.16.【解析】解:(1)M(,),即M(2,1.5).(2)根据平行四边形的对角线互相平分可得:设D点的坐标为(x,y),∵ABCD是平行四边形,①当AB为对角线时,∵A(-1,2),B(3,1),C(1,4),∴BC=,∴AD=,∵-1+3-1=1,2+1-4=-1,∴D点坐标为(1,-1),②当BC为对角线时,∵A(-1,2),B(3,1),C(1,4),∴AC=2,BD=2,D点坐标为(5,3).③当AC为对角线时,∵A(-1,2),B(3,1),C(1,4),∴AB=,CD=,D点坐标为:(-3,5),综上所述,符合要求的点有:(1,-1),(-3,5),(5,3).

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料