【新教材】4.4.3不同函数增长的差异(人教A版)本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、情景导入请学生用画图像,观察两个函数图像,探索它们在区间[0,+∞)上的增长差异,你能描述一下指数函数增长的特点吗?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
一、预习课本,引入新课阅读课本136-138页,思考并完成以下问题1.三种函数模型的性质?2.三种函数的增长速度比较?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。二、新知探究1.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增图象的变化随x增大逐渐变陡随x增大逐渐变缓随n值不同而不同2.三种函数的增长速度比较(1)在区间(0,+∞)上,函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但增长速度不同.(2)在区间(0,+∞)上随着x的增大,函数y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而函数y=logax(a>1)的增长速度则会越来越慢.(3)存在一个x0,使得当x>x0时,有logaxf(6).【解析】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.
(2)因为f(1)>g(1),f(2)f(8).【解析】因为f(1)>g(1),f(2)y3C.y1>y3>y2D.y2>y3>y1【答案】B【解析】在同一平面直角坐标系中画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.题型二体会指数函数的增长速度例2甲、乙、丙三个公司分别到慈善总会捐款给某灾区,捐款方式如下:甲公司:在10天内,每天捐款5万元给灾区;乙公司:在10天内,第1天捐款1万元,以后每天比前一天多捐款1万元;丙公司:在10天内,第1天捐款0.1万元,以后每天捐款都比前一天翻一番.你觉得哪个公司捐款最多?【答案】丙公司捐款最多,为102.3万元.【解析】三个公司在10天内捐款情况如下表所示.公司捐款数量/万元时间 甲乙丙第1天510.1第2天520.2第3天530.4第4天540.8第5天551.6第6天563.2第7天576.4第8天5812.8第9天5925.6第10天51051.2总计5055102.3由上表可以看出,丙公司捐款最多,为102.3万元.解题技巧:(指数函数的增长速度的实际应用)解答此类问题的关键是明确“指数爆炸”“对数增长”等函数增长差异,需注意幂函数的增长是介于两者之间的.跟踪训练二
1.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资的函数模型为y=k1x,B产品的利润与投资的函数模型为y=k2xα(利润和投资的单位为百万元),其关系分别如图①,图②所示.(1)分别求出A,B两种产品的利润与投资的函数关系式;(2)该企业已筹集到资金1千万元,并准备全部投入到A,B两种产品的生产中,问怎样分配这1千万元,才能使企业获得最大利润,其最大利润为多少?(精确到万元)【答案】(1)A:y=x(x≥0),B:y=(x≥0).(2)投资A产品844万元,投资B产品156万元时,总利润最大,最大值约为578万元.【解析】(1)A:y=k1x过点(1,0.5),∴k1=.B:y=k2xα过点(4,2.5),(9,3.75),∴∴A:y=x(x≥0),B:y=(x≥0).(2)设投资B产品x(百万元),则投资A产品(10-x)(百万元),总利润y=(10-x)+=-(0≤x≤10).所以当=1.25,x=1.5625≈1.56时,ymax≈5.78.故投资A产品844万元,投资B产品156万元时,总利润最大,最大值约为578万元.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计4.4.3不同函数增长的差异1.三种函数模型的性质例1例22.三种函数的增长速度比较
七、作业课本140页习题4.4本节课通过数形结合研究不同函数增长的差异,借助结论解决相关问题,侧重用实操,培养学生的逻辑思维能力,提高学生的数学素养.