第四章指数函数与对数函数4.4.1对数函数的概念本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。课程目标学科素养1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。a.数学抽象:对数函数的概念;b.逻辑推理:对数函数与指数函数的关系;c.数学运算:求对数函数的定义域;d.直观想象:对数函数的图像;e.数学建模:运用对数函数解决实际问题;教学重点:对数函数的概念、求对数函数的定义域
教学难点:对数函数与指数函数的关系。多媒体教学过程设计意图核心教学素养目标(一)、问题探究问题1 当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系?设死亡生物体内碳14含量的年衰减率为p,如果把刚死亡的生物体内碳14含量看成1个单位,那么,死亡1年后,生物体内碳14含量为(1-p)1;死亡2年后,生物体内碳14含量为(1-p)2;死亡3年后,生物体内碳14含量为(1-p)3;……死亡5730年后,生物体内碳14含量为(1-p)5730.根据已知条件,(1-p)5730=,从而1-p=,所以p=1-.设生物死亡年数为x,死亡生物体内碳14含量为y,那么y=(1-p)x,即,(x∈[0,+∞)).这也是一个函数,指数x是自变量.死亡生物体内碳14含量每年都以1-减率衰减.像这样,衰减率为常数的变化方式,我们称为指数衰减.因此,死亡生物体内碳14含量呈指数衰减.在上述问题中,我们用指数函数模型研究了呈指数增长或衰减变化规律的问题.对这样的问题,在引入对数后,我们还可以从另外的角度,对其蕴含的规律作进一步的研究.在问题中,我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14温故知新,通过对上节指数函数问题的回顾,提出新的问题,构建对数函数的概念。培养和发展逻辑推理和数学抽象的核心素养。
的含量,如何得知它死亡了多长时间呢?进一步地,死亡时间x是碳14的含量y的函数吗?2、概念建构根据指数与对数的关系,由(x≥0)得到如图过y轴正半轴上任意一点(0,)(≤1)作x轴的平行线,与(x≥0)的图象有且只有一个交点(,).这就说明,对于任意一个y∈(0,1],通过对应关系,在[0,+∞)上,都有唯一确定的数x和它对应,所以x也是y的函数.也就是说,函数刻画了时间x随碳14含量y的衰减而变化的规律.同样地,根据指数与对数的关系,由(>0,且≠1)可以得到(>0,且≠1),x也是y的函数.通常,我们用x表示自变量,表y示函数.为此,将(>0,且≠1)中的字母x和y对调,写成yx(>0,且≠1).对数函数的概念函数y=lo____x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(二)、典例解析题型1对数函数的概念及应用例1 (1)下列给出的函数:①y=log5x+1;②y=logax2(a>0,且a≠1);③y=log(-1)x;④y=log3x;⑤y=logx(x>0,且x≠1);通过对指数函数回顾,类比得出对数函数的概念质,发展学生逻辑推理,数学抽象、数学运算等核心素养;通过典例问题的分析,让学生进一步熟悉对数函数的概念性。培养逻辑推理
⑥y=logx.其中是对数函数的为( )A.③④⑤ B.②④⑥C.①③⑤⑥D.③⑥(2)若函数y=log(2a-1)x+(a2-5a+4)是对数函数,则a=________.(3)已知对数函数的图象过点(16,4),则f=________.(1)D (2)4 (3)-1 [(1)由对数函数定义知,③⑥是对数函数,故选D.(2)因为函数y=log(2a-1)x+(a2-5a+4)是对数函数,所以解得a=4.(3)设对数函数为f(x)=logax(a>0且a≠1),由f(16)=4可知loga16=4,∴a=2,∴f(x)=log2x,∴f=log2=-1.][规律方法] 判断一个函数是对数函数的方法跟踪训练1.若函数f(x)=(a2+a-5)logax是对数函数,则a=________.答案:2 [由a2+a-5=1得a=-3或a=2.又a>0且a≠1,所以a=2.]题型2对数函数的定义域例2求下列函数的定义域.(1)f(x)=;(2)f(x)=+ln(x+1);(3)f(x)=log(2x-1)(-4x+8).[解] (1)要使函数f(x)有意义,则logx+1>0,即logx>-1,解得0