3.2 函数的基本性质3.2.1 单调性与最大(小)值第1课时 函数的单调性学习目标核心素养1.理解函数的单调性及其几何意义,能运用函数图象理解和研究函数的单调性.(重点、难点)2.会用函数单调性的定义判断(或证明)一些函数的单调性.(难点)3.会求一些具体函数的单调区间.(重点)1.借助单调性的证明,培养逻辑推理素养.2.利用求单调区间及应用单调性解题,培养直观想象和数学运算素养.1.增函数与减函数的定义条件一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时都有f(x1)<f(x2)都有f(x1)>f(x2)结论那么就说函数f(x)在区间D上是增函数那么就说函数f(x)在区间D上是减函数图示思考1:增(减)函数定义中的x1,x2有什么特征?提示:定义中的x1,x2有以下3个特征:(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,8
证明时不能以特殊代替一般;(2)有大小,通常规定x1f(5x-6),∴2x-3>5x-6,即x.∴x的取值范围为.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,8
反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a,b]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.1.定义单调性时应强调x1,x2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3.已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识,如f(x)在D上递增,则f(x1)-1,则y1-y2=-=.∵x1>x2>-1,∴x1-x2>0,x1+1>0,x2+1>0,∴>0,即y1-y2>0,y1>y2,∴y=在(-1,+∞)上是增函数.8