2021年新教材必修第一册5.3《诱导公式》课时练习一、选择题计算sin240°=( )A.B.C.-D.-已知a=tan(-),b=cos,c=sin(-),则a、b、c的大小关系是( )A.b>a>cB.a>b>cC.b>c>aD.a>c>b计算sin21°+sin22°+sin23°+…+sin289°=( )A.89B.90C.44.5D.45如果α、β满足α+β=2π,则下列式子中正确的个数是( )①sinα=sinβ;②sinα=-sinβ;③cosα=cosβ;④tanα=-tanβ.A.1B.2C.3D.4已知cos(75°+α)=,则cos(105°-α)-sin(15°-α)的值为( )A.B.-C.D.-若cos(-80°)=k,那么tan80°=( )A.B.-C.D.-若tan(7π+α)=a,则的值为( )A.B.C.-1D.1若sin(180°+α)+cos(90°+α)=-a,则cos(270°-α)+2sin(360°-α)的值是( )A.-B.-C.D.已知点(tan,sin(-))是角θ终边上一点,则tanθ等于( )A.2B.-C.-D.-2若f(sinx)=3-cos2x,则f(cosx)等于( )A.3-cos2xB.3-sin2xC.3+cos2xD.3+sin2x
二、填空题若α是第三象限角,则=_________.sin(-)+2sin+3sin等于________.已知角α的终边上一点P(3a,4a),aa>c.答案为:C;解析:∵sin21°+sin289°=sin21°+cos21°=1,sin22°+sin288°=sin22°+cos22°=1,……∴sin21°+sin22°+sin23°+…+sin289°=sin21°+sin22°+sin23°+…+sin244°+sin245°+sin246°+…+sin287°+sin288°+sin289°=44+0.5=44.5.答案为:C;解析:∵α+β=2π,∴α=2π-β,∴sinα=sin(2π-β)=-sinβ,cosα=cos(2π-β)=cosβ,tanα=tan(2π-β)=-tanβ,故②③④正确,∴选C.答案为:D解析:∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-,sin(15°-α)=sin[90°-(75°+α)]=cos(75°+α)=,∴cos(105°-α)-sin(15°-α)=--=-.答案为:A;解析:∵cos(-80°)=k,∴cos80°=k,∴sin80°=,∴tan80°==.答案为:B;答案为:B.解析:由sin(180°+α)+cos(90°+α)=-a,得-sinα-sinα=-a,即sinα=,
所以cos(270°-α)+2sin(360°-α)=-sinα-2sinα=-3sinα=-.答案为:C.解析:点(tan,sin(-))可化为点(1,-),则tanθ=-.故选C.答案为:C.解析:∵cosx=sin(-x),∴f(cosx)=f(sin(-x))=3-cos[2(-x)]=3-cos(π-2x)=3+cos2x.-sinα-cosα答案为:0;解析:原式=-sin+2sin(π+)+3sin(π-)=-sin-2sin+3sin=0.答案为:;解析:cosα===-,cos(540°-α)=cos(180°-α)=-cosα=.答案为:1+;解析:∵f(cosx)=1-cos2x,∴f(sin15°)=f(cos75°)=1-cos150°=1-cos(180°-30°)=1+cos30°=1+.解:(1)sin=sin(2π+)=sin=.(2)cos=cos(4π+)=cos=.(3)tan(-)=cos(-4π+)=cos=.(4)sin(-765°)=sin[360°×(-2)-45°]=sin(-45°)=-sin45°=-.注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.证明:左边==-,
右边=,左边=右边,∴原等式成立.解:由已知得sinA=sinB,cosA=cosB,上式两端分别平方,再相加得2cos2A=1,所以cosA=±.若cosA=-,则cosB=-,此时A,B均为钝角,不符合题意.所以cosA=,所以cosB=cosA=.所以A=,B=,C=π-(A+B)=.解:(1)f(α)==sinα·cosα.(2)由f(α)=sinα·cosα=,可知(cosα-sinα)2=cos2α-2sinα·cosα+sin2α=1-2sinα·cosα=1-2×=.又∵<α<,∴cosα<sinα,即cosα-sinα<0.∴cosα-sinα=-.