人教A版必修第一册第三章函数的概念与性质3.2.1单调性与最大(小)值
课程目标1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.
数学学科素养1.数学抽象:用数学语言表示函数单调性和最值;2.逻辑推理:证明函数单调性;3.数学运算:运用单调性解决不等式;4.数据分析:利用图像求单调区间和最值;5.数学建模:在具体问题情境中运用单调性和最值解决实际问题。
自主预习,回答问题阅读课本76-77页,思考并完成以下问题1.增函数、减函数的概念是什么?2.如何表示函数的单调区间?3.函数的单调性和单调区间有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
2.单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛]一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=在(-∞,0)∪(0,+∞)上单调递减.
自主预习,回答问题阅读课本79-80页,思考并完成以下问题1.函数最大(小)值的定义是什么?2.从函数的图象可以看出函数最值的几何意义是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
[点睛]最大(小)值必须是一个函数值,是值域中的一个元素,如函数y=x2(x∈R)的最小值是0,有f(0)=0.
题型分析举一反三题型一利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:分析:若函数为我们熟悉的函数,则直接给出单调区间,否则应先画出函数的草图,再结合图象“升降”给出单调区间.解:(1)函数y=3x-2的单调区间为R,其在R上是增函数.(2)函数y=-的单调区间为(-∞,0),(0,+∞),其在(-∞,0)及(0,+∞)上均为增函数.
解题方法(利用图象确定函数的单调区间)1.函数单调性的几何意义:在单调区间上,若函数的图象“上升”,则函数为增区间;若函数的图象“下降”,则函数为减区间.因此借助于函数图象来求函数的单调区间是直观且有效的一种方法.除这种方法外,求单调区间时还可以使用定义法,也就是由增函数、减函数的定义求单调区间.求出单调区间后,若单调区间不唯一,中间可用“,”隔开.2.一次、二次函数及反比例函数的单调性:(1)一次函数y=kx+b(k≠0)的单调性由系数k决定:当k>0时,该函数在R上是增函数;当k