新教材高中数学人教版必修第一册:5.5.1《两角和与差的正弦、余弦和正切公式》精品课件 (含答案)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教2019版必修第一册第五章三角函数5.5.1两角和与差的正弦、余弦和正切公式 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用;2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题. 数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式;2.逻辑推理:运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。 自主预习,回答问题阅读课本215-218页,思考并完成以下问题1.两角和与差的正弦、余弦和正切公式是什么(共六组)?2.二倍角公式是什么?升幂公式是?降幂公式是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 知识清单1.两角和与差的正弦、余弦和正切公式 1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.()(2)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.()(3)公式tan(α+β)=可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.()(4)当α是第一象限角时,.()(5)半角的正余弦公式实质就是将倍角的余弦公式逆求而得来的.()(6)公式asinx+bcosx=sin(x+φ)中φ的取值与a,b的值无关.()小试牛刀答案:(1)×(2)√(3)×(4)×(5)√(6)× 题型分析举一反三题型一给角求值【例1】利用和(差)角公式计算下列各式的值. 解题方法(利用公式求值问题)在利用公式解含有非特殊角的三角函数式的求值问题时,要先把非特殊角转化为特殊角的差(或同一个非特殊角与特殊角的差),利用公式直接化简求值,在转化过程中,充分利用诱导公式,构造出两角差的余弦公式的结构形式,正确地顺用公式或逆用公式求值. 1.cos50°=()A.cos70°cos20°-sin70°sin20°B.cos70°sin20°-sin70°cos20°C.cos70°cos20°+sin70°sin20°D.cos70°sin20°+sin70°cos20°解析cos50°=cos(70°-20°)=cos70°cos20°+sin70°sin20°.答案C 答案C 题型二给值求值【例2】 【例3】 解题方法(给值求值的解题策略)(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,适当地拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有: 题型三给值求角 解题方法(解决三角函数给值求角问题的方法步骤) 答案B 题型四二倍角公式应用【例5】 应用二倍角公式化简(求值)的策略:化简求值关注四个方向:分别从“角”“函数名”“幂”“形”着手分析,消除差异.解题方法(二倍角公式应用)

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料