2022年中考数学一轮考点课时练习18《菱形》一、选择题1.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )A.5 B.10 C.15 D.202.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形面积是( )A.16 B.16 C.8 D.83.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10 B.8 C.6 D.54.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形5.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为 ( )A.2 B.4 C.6 D.86.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30° B.30°或45° C.45°或60° D.30°或60°7.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.
下列说法正确的是:( )①∠1=∠2;②四边形ABEF是平行四边形但不是菱形;③四边形ABEF是菱形;④若四边形ABEF的周长为16,AE=4,则∠C=60°.A.①②B.①③C.①③④D.①②④8.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE;②∠AHC=120°;③AH+CH=DH中.正确的是()A.①②B.①③C.②③D.①②③二、填空题9.如图,在菱形ABCD中,对角线AC、BD相交于点O、H为边AD的中点,菱形的周长为48,则OH的长是 .10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=度.
11.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________cm.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=________.13.把两张宽为2cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD.其中正确的结论为________(请将所有正确的序号都填上).三、解答题15.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于点F,交BC于点E,过点E作EG⊥AB于G,连结GF.求证:四边形CFGE是菱形.
16.如图在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.17.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.
18.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1 图2
参考答案1.A2.C3.D4.D5.A;6.D;7.C.8.D9.答案为:6.10.答案为:60.11.答案为:16.12.答案为:4.8;13.答案为:菱形,4 14.答案为:①③④;15.证明:由∠ACB=90°,AE平分∠BAC,EG⊥AB,易证△ACE≌△AGE,∴CE=EG,∠AEC=∠AEG.∵CD是AB边上的高,EG⊥AB,∴EG∥CD,∴∠EFC=∠AEG,∴∠EFC=∠AEC,∴FC=EC,∴FC=EG,∴四边形CFGE是平行四边形.又∵GE=CE,∴四边形CFGE是菱形.16.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD=5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.
∴△ADE的周长为AD+AE+DE=5+5+8=18.17.解:18.解:(1)C.(2)①证明:∵AD=BC=5,S▱ABCD=15,AE⊥BC,∴AE=3.如图,∵EF=4,∴在Rt△AEF中,AF=5.∴AF=AD=5.又△AEF经平移得到△DE'F',∴AF∥DF',AF=DF',∴四边形AFF'D是平行四边形.又AF=AD,∴四边形AFF'D是菱形.②如图,连接AF',DF.在Rt△DE'F中,∵E'F=E'E-EF=5-4=1,DE'=3,∴DF=.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'=3.∴四边形AFF'D的两条对角线长分别为,3.